Page 4241 of 6020
7A1-2 CONSTRUCTION AND FUNCTION
PAGE
Learning Function ......................................................................................................7A1- 33
Major Input/Output Component and Their Functions .............................................7A1- 34
Control Circuit Block Diagram ..................................................................................7A1- 35
Gear Train (Transmission Mechanism) Operation and Hydraulic Circuit ..................7A1- 36
Construction and Operation .....................................................................................7A1- 36
Component Name and Function ...............................................................................7A1- 36
Component and Their Operating Condition ............................................................7A1- 37
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4242 of 6020

CONSTRUCTION AND FUNCTION 7A1-3
DESCRIPTION
CONSTRUCTION
1 Converter Housing 6 Low Clutch 11 Oil Pump
2 Torque Converter 7 Low & Reverse Brake 12 Control Valve
3 High Clutch 8 Output Shaft 13 Low One-way Clutch
4 Reverse Clutch 9 Extension Housing 14 Parking Gear
5 2-4 Brake 10 Input Shaft
Figure 1. Construction of Automatic Transmission
The JR405E automatic transmission is electrically controlled by a microcomputer transmission control module
(TCM). There are four forward speeds and one reverse speed.
This JR405E automatic transmission employs a clutch pressure direct control system (Direct Electronic Shift
Control: DESC) using duty cycle type solenoids, which ensure high shift quality.
This transmission also has a learning function and constantly checks the time of each clutch and brake
required for the shift in order to match this time with the target value for the optimum shift.
The TCM will automatically select the most appropriate shift points and lock-up points depending on the
Accelerator pedal opening, the vehicle speed and the vehicle load.
If any trouble arises in the speed sensor, APP sensor, solenoid, etc., the fail-safe control function is activated
to keep the running performance.
Problems with the sensors or the solenoids can quickly be detected with the self diagnosis procedure
described in this manual.
The JR405E automatic transmission consists of the torque converter, oil pump, input shaft, out put shaft,
planetary gears and control valves.
The gear train consists of two planetary gear sets and three multiple plate clutches in combination with two
multiple plate brakes and a one-way clutch.
2WD
4WD
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4243 of 6020
7A1-4 CONSTRUCTION AND FUNCTION
MAIN DATA AND SPECIFICATION
Model JR405E
Torque Converter Type Three-Elements, One-Stage & Two-Phases
Type W ith Lock-up Function
Torque Converter Stall Torque Ratio 1.8
Name ATF DEXRON III
Quantity L (US gal/Imp gal) 9.2-9.6 (2.43-2.54/2.02-2.11) AT F
Cooling System Water Cooled Type (Radiator)
1st 2.785
2nd 1.545
3rd 1.000
4th (Over Drive) 0.694
Gear Ratio
Reverse 2.272
Low Clutch L/C 7
High Clutch H/C 5
Reverse Clutch R/C 2Number of Discs Clutch
Low One-way Clutch L/O.C 1 Set
Low & Reverse
Brake L&R/B 6
Brake
2-4 Brake 2-4/B 5 Number of Discs
Sun Gear
33
Pinion
Gear 21Front Planetary
Ring Gear 75
Sun Gear 42
Pinion
Gear 17
Planetary Gear Unit
Rear Planetary Ring Gear 75 Number of Teeth
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4244 of 6020
CONSTRUCTION AND FUNCTION 7A1-5
NUMBER PLATE LOCATION
JATCO CORP
UK02
∗
∗∗
∗
1
No. 1X80652
23 4 1→ UK000 UK020 = 2WD
UK021 = 4WD
2→ 1 Production Year
1=2001
2=2002
3=2003
4=2004
5=2005
6=2006
7=2007
3→ X Product Month
1 ~9=January ~September
X=October
Y=November
Z=December
4→ 80652 Production Sequence Number
Serial Number Location
2WD:Back of the transmission rear mounting
4WD:Left side of the transmission rear mounting
Figure 2. Number Plate Location
4WD
2WD
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4245 of 6020
7A1-6 CONSTRUCTION AND FUNCTION
ELECTRONIC CONTROL COMPONENTS LOCATION
4WD Only 4W D Only
Instrument panel (Meter)
Speed meter (2WD Only)
Shift position indicator lamp
POWER DRIVE, 3rd START
indicator lamp
A/T OIL TEMP indicator lamp
CHECK TRANS indicator lam
p
Brake pedal
Brake Switch
Transmission Control Module (TCM)
Electrical source
Ignition
Battery voltage
Speed sensor
Turbine sensor
Inhibitor switch
ATF thermo sensor
High clutch oil pressure switch
2-4 brake oil pressure switch
Low & Reverse brake oil pressure
switch
Line pressure solenoid
Low clutch solenoid
High clutch solenoid
2-4 brake solenoid
Low & Reverse brake solenoid
Lock-up solenoid
Transmission
Transfer Control Module
Transfer
4L mode switch
Engine
Engine speed sensor
Accelerator pedal Position Sensor
Engine Control Module (ECM)
Data link connector
Select lever
Power Drive
, 3rd Start select switch
Figure 3. Electronic Control Components Location
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4246 of 6020
CONSTRUCTION AND FUNCTION 7A1-7
TRANSMISSION CONTROL MODULE (TCM) PERIPHERAL CIRCUIT
Figure 4. TCM Peripheral Circuit
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4247 of 6020

7A1-8 CONSTRUCTION AND FUNCTION
STRUCTURE AND FUNCTION OF COMPONENT
TORQUE CONVERTER (WITH LOCK-UP FUNCTION)
• The torque converter is a device for transmitting the engine torque to the transmission. It transmits power
by means of oil when the lock-up clutch is disengaged, and by means of a lock-up clutch when it is
engaged.
• The torque converter is of the symmetrical, three-element, single-stage, two-phase type.
• As shown in the drawing, the symmetrical three-elements refer to three elements (components) consisting
of impeller (1), turbine (2) and stator (3) that are arranged symmetrically (figure 5).
• "Single-stage" means that there is only one turbine as an output element; "two-phase" means that the
pump impeller acts as a torque converter when the turbine speed is comparatively low, and as a fluid
coupling when the speed is high.
1. Pump Impeller
2. Turbine Runner
3. Stator
1. Pump Impeller
2. Turbine Runner
3. Stator
4. Converter Cover
5. One-way Clutch
6. Lock-up Piston
7. Torsion Damper
Figure 5. Torque Converter
Figure 6. Construction of Torque Converter
Lock-up mechanism
• "Lock-up" refers to a fixed state of the lock-up clutch inside the torque converter and thus connects the
engine directly to the transmission.
• The hydraulic pressure for the lock-up control is supplied from two circuits.
When the lock-up clutch is disengaged (Figure 7) • When the lock-up is disengaged, the torque converter operating pressure is supplied from the oil pass age
(A) to between the cover and the lock-up piston, and separates the lock-up piston clutch facing and
converter cover.
• As a result, the engine drive power is transmitted from the converter cover to the pump impeller, to the
ATF and to the turbine. The torque converter functions as a fluid connector in this condition.
• The torque converter operating pressure is supplied from oil passage (A), and passes through oil passage
(B).
When the lock-up clutch is engaged (Figure 8) • When the lock-up is engaged, the torque converter operating pressure is supplied from oil passage (B) to
the oil pump impeller, the turbine, and then to the stator side. The oil between the lock-up piston and
converter cover is drained.
• Since the force acting on the right side of the lock-up piston is greater than the force on the left side, it
connects the lock-up piston clutch facing with the converter cover, thereby increasing the transmission
efficiency.
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007
Page 4248 of 6020

CONSTRUCTION AND FUNCTION 7A1-9
Figure 7. Lock-up Control (Disengaged) Figure 8. Lock-up Control (Engaged)
OIL PUMP
• The oil pump generating oil pressure is a small-size trochoid gear type oil pump. It feeds oil to the torque
converter, lubricates the power train mechanism, and feeds the oil pressure to the oil pressure control unit
under pressure.
• The oil pump is located behind the torque converter. Since the inner rotor in the oil pump is fitted with
the drive sleeve of the torque converter, it works using power from the engine.
Figure 9. Construction of Oil Pump Figure 10. Location of Oil Pump
• When the inner rotor in the oil pump rotates, ATF is sucked in from the oil pan, passed between the inner
rotor, outer rotor and crescent, and then discharged. This discharged pressure is sent to the pressure
regulator valve in the control valve, and adjusted as required for operating the A/T. The flow rate under
pressure increases or decreases in proportion to the number of rotations.
Figure 11. Operation of Oil Pump
BACK TO CHAPTER INDEX
TO MODEL INDEX
ISUZU KB P190 2007