Page 1305 of 3502
![NISSAN TEANA 2003 Service Manual ENGINE CONTROL SYSTEM
EC-23
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during NISSAN TEANA 2003 Service Manual ENGINE CONTROL SYSTEM
EC-23
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during](/manual-img/5/57392/w960_57392-1304.png)
ENGINE CONTROL SYSTEM
EC-23
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The four fuel injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.
Electronic Ignition (EI) SystemBBS005BG
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
Firing order: 1-3-4-2
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is revised by the ECM according to the other data stored in
the ECM.
At starting
During warm-up
At idle
At low battery voltage
During acceleration
SEF337W
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
2
Piston position
Ignition timing
controlPower transistor Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
2
Wheel sensor
Vehicle speed*1
Page 1306 of 3502
![NISSAN TEANA 2003 Service Manual EC-24
[QR]
ENGINE CONTROL SYSTEM
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used u NISSAN TEANA 2003 Service Manual EC-24
[QR]
ENGINE CONTROL SYSTEM
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used u](/manual-img/5/57392/w960_57392-1305.png)
EC-24
[QR]
ENGINE CONTROL SYSTEM
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
Fuel Cut Control (At No Load and High Engine Speed)BBS005BH
INPUT/OUTPUT SIGNAL CHART
*: This signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine
speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies
based on engine speed.
Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.
NOTE:
This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, EC-21
.
Sensor Input Signal to ECM ECM function Actuator
Park/neutral position (PNP) switch Neutral position
Fuel cut control Fuel injector Accelerator pedal position sensor Accelerator pedal position
Engine coolant temperature sensor Engine coolant temperature
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed
Wheel sensor Vehicle speed*
Page 1307 of 3502
![NISSAN TEANA 2003 Service Manual AIR CONDITIONING CUT CONTROL
EC-25
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
AIR CONDITIONING CUT CONTROLPFP:23710
Input/Output Signal ChartBBS005BI
*1: This signal is sent to the ECM through CAN communication NISSAN TEANA 2003 Service Manual AIR CONDITIONING CUT CONTROL
EC-25
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
AIR CONDITIONING CUT CONTROLPFP:23710
Input/Output Signal ChartBBS005BI
*1: This signal is sent to the ECM through CAN communication](/manual-img/5/57392/w960_57392-1306.png)
AIR CONDITIONING CUT CONTROL
EC-25
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
AIR CONDITIONING CUT CONTROLPFP:23710
Input/Output Signal ChartBBS005BI
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signal of engine speed and battery voltage.
SYSTEM DESCRIPTION
This system improves engine operation when the air conditioner is used.
Under the following conditions, the air conditioner is turned OFF.
When the accelerator pedal is fully depressed.
When cranking the engine.
At high engine speeds.
When the engine coolant temperature becomes excessively high.
When operating power steering during low engine speed or low vehicle speed.
When engine speed is excessively low.
When refrigerant pressure is excessively low or high.
Sensor Input Signal to ECM ECM function Actuator
Air conditioner switch Air conditioner ON signal
Air conditioner
cut controlAir conditioner relay Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
2
Engine coolant temperature sensor Engine coolant temperature
Refrigerant pressure sensor Refrigerant pressure
Power steering pressure sensor Power steering operation
Wheel sensor
Vehicle speed*
1
Battery
Battery voltage*2
Page 1308 of 3502
EC-26
[QR]
CAN COMMUNICATION
CAN COMMUNICATIONPFP:23710
System DescriptionBBS005BJ
CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle mul-
tiplex communication line with high data communication speed and excellent error detection ability. Many elec-
tronic control units are equipped onto a vehicle, and each control unit shares information and links with other
control units during operation (not independent). In CAN communication, control units are connected with 2
communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.
Each control unit transmits/receives data but selectively reads required data only.
Refer to LAN-49, "
CAN System Specification Chart" , about CAN communication for detail.
Page 1309 of 3502
![NISSAN TEANA 2003 Service Manual EVAPORATIVE EMISSION SYSTEM
EC-27
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
EVAPORATIVE EMISSION SYSTEMPFP:14950
DescriptionBBS005BK
SYSTEM DESCRIPTION
The evaporative emission system is used to reduce hydroca NISSAN TEANA 2003 Service Manual EVAPORATIVE EMISSION SYSTEM
EC-27
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
EVAPORATIVE EMISSION SYSTEMPFP:14950
DescriptionBBS005BK
SYSTEM DESCRIPTION
The evaporative emission system is used to reduce hydroca](/manual-img/5/57392/w960_57392-1308.png)
EVAPORATIVE EMISSION SYSTEM
EC-27
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
EVAPORATIVE EMISSION SYSTEMPFP:14950
DescriptionBBS005BK
SYSTEM DESCRIPTION
The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel
system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.
The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the
vapor is stored there when the engine is not operating or when refueling to the fuel tank.
The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the
engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the
engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is
proportionally regulated as the air flow increases.
EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and
idling.
PBIB0491E
Page 1310 of 3502
EC-28
[QR]
EVAPORATIVE EMISSION SYSTEM
EVAPORATIVE EMISSION LINE DRAWING
PBIB2153E
Page 1311 of 3502
EVAPORATIVE EMISSION SYSTEM
EC-29
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
Component InspectionBBS005BL
EVAP CANISTER
Check EVAP canister as follows:
1. Block port B .
2. Blow air into port A and check that it flows freely out of port C .
3. Release blocked port B .
4. Apply vacuum pressure to port B and check that vacuum pres-
sure exists at the ports A and C .
5. Block port A and B .
6. Apply pressure to port C and check that there is no leakage.
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)
1. Wipe clean valve housing.
2. Check valve opening pressure and vacuum.
3. If out of specification, replace fuel filler cap as an assembly.
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Refer to EC-288, "Component Inspection" .
PBIB0663E
SEF989X
Pres-
sure:15.3 - 20.0 kPa (0.153 - 0.200 bar,
0.156 - 0.204 kg/cm
2 , 2.22 - 2.90 psi)
Va c u u m :−6.0 to −3.4 kPa (−0.060 to −0.034 bar,
−0.061 to −0.035 kg/cm
2 , −0.87 to −0.49 psi)
SEF943S
Page 1312 of 3502
![NISSAN TEANA 2003 Service Manual EC-30
[QR]
POSITIVE CRANKCASE VENTILATION
POSITIVE CRANKCASE VENTILATIONPFP:11810
DescriptionBBS005BM
SYSTEM DESCRIPTION
This system returns blow-by gas to the intake manifold.
The positive crankcas NISSAN TEANA 2003 Service Manual EC-30
[QR]
POSITIVE CRANKCASE VENTILATION
POSITIVE CRANKCASE VENTILATIONPFP:11810
DescriptionBBS005BM
SYSTEM DESCRIPTION
This system returns blow-by gas to the intake manifold.
The positive crankcas](/manual-img/5/57392/w960_57392-1311.png)
EC-30
[QR]
POSITIVE CRANKCASE VENTILATION
POSITIVE CRANKCASE VENTILATIONPFP:11810
DescriptionBBS005BM
SYSTEM DESCRIPTION
This system returns blow-by gas to the intake manifold.
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake
manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the
PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of venti-
lating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air
passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold
vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection
in the reverse direction.
On vehicles with an excessively high blow-by, the valve does not
meet the requirement. This is because some of the flow will go
through the hose connection to the air inlet tubes under all condi-
tions.
Component InspectionBBS005BN
PCV (POSITIVE CRANKCASE VENTILATION) VALVE
With engine running at idle, remove PCV valve from rocker cover. A
properly working valve makes a hissing noise as air passes through
it. A strong vacuum should be felt immediately when a finger is
placed over valve inlet.
PBIB0492E
PBIB1588E
PBIB1589E