Page 3217 of 4462

SERVICE INFORMATION FOR ELECTRICAL INCIDENT GI-33
C
D E
F
G H
I
J
K L
M B
GI
Revision: 2006 December 2006 FX35/FX45
no voltage; short is further down the circuit than SW1.
With SW1 closed, relay and solenoid disconnected and the DMM leads across both fuse terminals, check
for voltage.
voltage; short is between SW1 and the relay (point B).
no voltage; short is further down the circuit than the relay.
With SW1 closed, relay contacts jumped with fused jumper wire check for voltage.
voltage; short is down the circuit of the relay or between the relay and the disconnected solenoid (point C).
no voltage; retrace steps and check power to fuse block.
Ground Inspection
Ground connections are very important to the proper operation of electrical and electronic circuits. Ground
connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can
become an unwanted resistance. This unwanted resistance can change the way a circuit works.
Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drasti-
cally affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even
when the ground connection looks clean, there can be a thin film of rust on the surface.
When inspecting a ground connection follow these rules:
Remove the ground bolt or screw.
Inspect all mating surfaces for tarnish, dirt, rust, etc.
Clean as required to assure good contact.
Reinstall bolt or screw securely.
Inspect for “add-on” accessories which may be interfering with the ground circuit.
If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the
wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one
eyelet make sure no ground wires have excess wire insulation.
For detailed ground distribution information, refer to “Ground Distribution” in PG section.
Voltage Drop Tests
Voltage drop tests are often used to find components or circuits which have excessive resistance. A voltage
drop in a circuit is caused by a resistance when the circuit is in operation.
Check the wire in the illustration. When measuring resistance with DMM, contact by a single strand of wire will
give reading of 0 ohms. This would indicate a good circuit. When the circuit operates, this single strand of wire
is not able to carry the current. The single strand will have a high resistance to the current. This will be picked
up as a slight voltage drop.
Unwanted resistance can be caused by many situations as follows:
Undersized wiring (single strand example)
Corrosion on switch contacts
Loose wire connections or splices.
SGI853
Page 3218 of 4462

GI-34
SERVICE INFORMATION FOR ELECTRICAL INCIDENT
Revision: 2006 December 2006 FX35/FX45
If repairs are needed always use wire that is of the same or larger gauge.
MEASURING VOLTAGE DROP — ACCUMULATED METHOD
Connect the DMM across the connector or part of the circuit you want to check. The positive lead of the
DMM should be closer to power and the negative lead closer to ground.
Operate the circuit.
The DMM will indicate how many volts are being used to “push” current through that part of the circuit.
Note in the illustration that there is an excessive 4.1 volt drop between the battery and the bulb.
MEASURING VOLTAGE DROP — STEP-BY-STEP
The step-by-step method is most useful for isolating excessive drops in low voltage systems (such as those in
“Computer Controlled Systems”).
Circuits in the “Computer Controlled System” operate on very low amperage.
The (Computer Controlled) system operations can be adversely affected by any variation in resistance in the
system. Such resistance variation may be caused by poor connection, improper installation, improper wire
gauge or corrosion.
The step by step voltage drop test can identify a component or wire with too much resistance.
SGI974
SAIA0258E
Page 3219 of 4462

SERVICE INFORMATION FOR ELECTRICAL INCIDENT GI-35
C
D E
F
G H
I
J
K L
M B
GI
Revision: 2006 December 2006 FX35/FX45
Control Unit Circuit Test
System Description:When the switch is ON, the control unit lights up the lamp.
INPUT-OUTPUT VOLTAGE CHART
The voltage value is based on the body ground.
*:If high resistance exists in the switch side circuit (caused by a single strand), terminal 1 does not detect battery voltage. Control unit
does not detect the switch is ON even if the switch does not turn ON. Therefore, the control unit does not supply power to ligh t up the
lamp.
INPUT-OUTPUT VOLTAGE CHART
The voltage value is based on the body ground.
*:If high resistance exists in the switch side circuit (caused by a single strand), terminal 2 does not detect approx. 0V. Cont rol unit does
not detect the switch is ON even if the switch does not turn ON. Therefore, the control unit does not control ground to light u p the lamp.
MGI034A
Pin
No. Item Condition
Voltage
value [V] In case of high resistance such as single strand [V] *
1 Switch Switch ON Battery voltage Lower than battery voltage Approx. 8 (Example)
Switch OFF Approx. 0 Approx. 0
2Lamp Switch ON Battery voltage Approx. 0 (Inoperative lamp)
Switch OFF Approx. 0 Approx. 0
MGI035A
Pin
No. Item Condition
Voltage
value [V] In case of high resistance such as single strand [V] *
1 Lamp Switch ON Approx. 0 Battery voltage (Inoperative lamp)
Switch OFF Battery voltage Battery voltage
2Switch Switch ON Approx. 0 Higher than 0 Approx. 4 (Example)
Switch OFF Approx. 5 Approx. 5
Page 3220 of 4462

GI-36
SERVICE INFORMATION FOR ELECTRICAL INCIDENT
Revision: 2006 December 2006 FX35/FX45
Control Units and Electrical PartsNAS00089
PRECAUTIONS
Never reverse polarity of battery terminals.
Install only parts specified for a vehicle.
Before replacing the control unit, check the input and output and functions of the component parts.
Do not apply excessive force when disconnecting a connector.
Do not apply excessive shock to the control unit by dropping or
hitting it.
Be careful to prevent condensation in the control unit due to
rapid temperature changes and do not let water or rain get on it.
If water is found in the control unit, dry it fully and then install it in
the vehicle.
Be careful not to let oil to get on the control unit connector.
Avoid cleaning the control unit with volatile oil.
Do not disassemble the control unit, and do not remove the
upper and lower covers.
When using a DMM, be careful not to let test probes get close to
each other to prevent the power transistor in the control unit
from damaging battery voltage because of short circuiting.
When checking input and output signals of the control unit, use
the specified check adapter.
SAIA0255E
SEF348N
Page 3221 of 4462

CONSULT-II CHECKING SYSTEM GI-37
C
D E
F
G H
I
J
K L
M B
GI
Revision: 2006 December 2006 FX35/FX45
CONSULT-II CHECKING SYSTEMPFP:00000
DescriptionNAS0006J
CONSULT-II is a hand-held type tester. When it is connected with a diagnostic connector equipped on the
vehicle side, it will communicate with the control unit equipped in the vehicle and then enable various
kinds of diagnostic tests.
Refer to “CONSULT-II Software Operation Manual” for more information.
Function and System Application NAS0006K
x: Applicable
*:IVIS (NATS) INFINITI Vehicle Immobilizer System (Nissan Anti-theft System)
NOTE:
This item is indicated, but it is what it does not use.
Diagnostic test
mode Function
ENGINE
A/T
AIR BAG
REARVIEW CAMERA
METER A/C AMP BCM
AUTO DRIVE POS.
ABS (Including VDC) IVIS (NATS)*
IPDM E/R ICC
ALL MODE AWD/4WD INTELLIGENT KEY LDW
Work support This mode enables a technician to adjust some devices
faster and more accurately by following the indications on
CONSULT-II. x - - x - xxx -- x- xx
Self-diagnostic
results Self-diagnostic results can be read and erased quickly. x x x - x x x x x x x x x x
Trouble diagnos-
tic record Current self-diagnostic results and all trouble diagnostic
records previously stored can be read. --x-----------
Data monitor Input/Output data in the ECU can be read. x x - x x x x x - x x x x x
CAN diagnosis
support monitor The condition of CAN communication line can be read. x x - - x x x x - x x x x x
Active test Diagnostic Test Mode in which CONSULT-II drives some
actuators apart from the ECUs and also shifts some param-
eters in a specified range. x- -- - xxx -xxxxx
DTC & SRT con-
firmation The results of SRT (System Readiness Test) and the self-
diagnosis status/result can be confirmed. x- -- ----------
DTC work sup-
port The operating condition to confirm Diagnosis Trouble
Codes can be selected. xx-- ----------
ECU (ECM/TCM)
part number ECU (ECM/TCM) part number can be read. x x - x - x x x - - x x x x
ECU discrimi-
nated No. Classification number of a replacement ECU can be read to
prevent an incorrect ECU from being installed. -- x- ----------
Function test This mode can show results of self-diagnosis of ECU with
either 'OK' or 'NG'. For engines, more practical tests
regarding sensors/switches and/or actuators are available. xxx- ---x------
Control unit ini-
tialization All registered ignition key IDs in NATS components can be
initialized and new IDs can be registered. -- -- - - - - x- - - - -
Configuration
Note— -----x------- -
Pin read Individual control unit number can be read.
For future information, refer to “CONSULT-II operation
manual NATS-IVIS/NVIS” -- -- - - - - x- - - - -
Page 3222 of 4462

GI-38
CONSULT-II CHECKING SYSTEM
Revision: 2006 December 2006 FX35/FX45
Nickel Metal Hydride Battery Replacement NAS0006L
CONSULT-II contains a nickel metal hydride battery. When replacing the battery obey the following:
WARNING:
Replace the nickel metal hydride battery with Genuine CONSULT-II battery only. Use of another bat-
tery may present a risk of fire or explosion. The battery may present a fire or chemical burn hazard if
mistreated. Do not recharge, disassemble or dispose of in fire.
Keep the battery out of reach of children and discard used battery conforming to the local regulations.
Checking Equipment NAS0006M
When ordering the following equipment, contact your NISSAN/INFINITI distributor.
CAUTION:
If CONSULT-II is used with no connection of CONSULT-II CONVERTER, malfunctions might be
detected in self-diagnosis depending on control unit which carry out CAN communication.
If CONSULT-II CONVERTER is not connected with CONSULT-II, vehicle occur the “FAIL SAFE
MODE” which is “LIGHT UP the HEAD LIGHT” and/or “COOLING FAN ROTATING” when CON-
SULT-II is started.
Previous CONSULT-II “I” and “Y” DLC-I and DLC-II cables should NOT be used anymore because
their DDL connector pins can be damaged during cable swapping.
NOTE:
The CONSULT-II must be used in conjunction with a program card.
CONSULT-II does not require loading (Initialization) procedure.
Be sure the CONSULT-II is turned off before installing or removing a program card.
CONSULT-II Start ProcedureNAS0006N
NOTE:
Turning ignition switch off when performing CAN diagnosis could cause CAN memory to be erased.
1. Connect CONSULT-II and CONSULT-II CONVERTER to the data link connector.
Tool name Description
NISSAN CONSULT-II
1. CONSULT-II unit (Tester internal soft: Resident
version 3.3.0) and accessories
2. Program card UED05C and AEN04A-1 (For NATS)
3. CONSULT-II CONVERTER
4. “CONSULT-II Pigtail” Cable
SAIA0363E
PAIA0070E
Page 3223 of 4462

CONSULT-II CHECKING SYSTEM GI-39
C
D E
F
G H
I
J
K L
M B
GI
Revision: 2006 December 2006 FX35/FX45
2. If necessary, turn on the ignition switch.
3. Touch “START (NISSAN BASED VHCL)” or “System Shortcut” (eg: ENGINE) on the screen.
4. Touch necessary system on "SELECT SYSTEM" screen. If necessary system is not indicated, check power supply and
ground of system control unit. If it is normal, refer to GI-39,
"CONSULT-II Data Link Connector (DLC) Circuit" .
5. Select the desired part to be diagnosed on the "SELECT DIAG MODE" screen.
CONSULT-II Data Link Connector (DLC) CircuitNAS0006O
INSPECTION PROCEDURE
If the CONSULT-II cannot diagnose the system properly, check the following items.
NOTE:
The DDL1 and DDL2 circuits from DLC pins 12, 13, 14 and 15 may be connected to more than one system. A
short in a DDL circuit connected to a control unit in one system may affect CONSULT-II access to other sys-
tems.
SAIA0450E
BCIA0030E
BCIA0031E
Symptom Check item
CONSULT-II cannot access
any system.
CONSULT-II DLC power supply circuit (Terminal 8) and ground circuit (Terminal 4) (For detailed
circuit, refer to “MIL & Data Link Connectors Wiring Diagram” in EC section.)
CONSULT-II DLC cable and CONSULT-II CONVERTER
CONSULT-II cannot access
individual system. (Other sys-
tems can be accessed.)
CONSULT-II program card (Check the appropriate CONSULT-II program card for the system.
Refer to "Checking Equipment".)
Power supply and ground circuit for the control unit of the system (For detailed circuit, refer to wir-
ing diagram for each system.)
Open or short circuit between the system and CONSULT-II DLC (For detailed circuit, refer to wiring
diagram for each system.)
Open or short circuit CAN communication line. Refer to LAN-3, "Precautions When Using CON-
SULT-II" .
Page 3224 of 4462
GI-40
CONSULT-II CHECKING SYSTEM
Revision: 2006 December 2006 FX35/FX45
CIRCUIT DIAGRAM
TAWM0074E