Page 1929 of 2543
Replace oxygen sensor.
Go to relevant diagnostic trouble code chart.
Are there any other codes (besides code 21 or 28) being output?
WIRING DIAGRAM
INSPECTION PROCEDURE (Except California specification vehicles)
HINT: If diagnostic trouble code º21º is output, replace oxygen sensor (Fr).
If diagnostic trouble code º28º is output, replace oxygen sensor (Rr).
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±421
Page 1930 of 2543
INSPECTION PROCEDURE (Only for California specification vehicles)
HINT: If diagnostic trouble code º21º is output, check the main heated oxygen sensor (Fr) circuit.
If diagnostic trouble code º28º is output, check the main heated oxygen sensor (Rr) circuit.
Check voltage between terminals HT1, HT2 of engine control module
connector and body ground.
Connect SST (check harness ªAº).
See page EG±404)
SST 09990±01000
Measure voltage between terminals HT1, HT2 of engine
control module connector and body ground.
Voltage: 9 Ð 14 V
Go to step
Check main heated oxygen sensor heater.
Disconnect main heated oxygen sensor connector.
Measure resistance between terminals 1 and 2 of main
heated oxygen sensor connector.
Resistance: 11 Ð 16 at 20°C (68°F)
Replace main heated oxygen sensor.
Check and repair harness or connector between main
relay and main heated oxygen sensor, main heated oxy-
gen sensor and engine control module.
EG±422± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 1931 of 2543
Check voltage between terminals HT1, HT2 of engine control module
connector and body ground.
INSPECTION USING OSCILLOSCOPE
Replace main heated oxygen sensor.*
Check and replace engine control module.
*: It is probable the oxygen sensor has deteriorated.
Usually, this cannot be confirmed by visual inspec±
tion.
Warm up engine to normal operating temperature.
Measure voltage between terminals HT1, HT2 of
engine control module connector and body ground.
when engine is idling and racing at 4,000 rpm.
In the 4,000 rpm racing check, continue engine rac-
ing at 4,000 rpm for approx. 20 seconds or more.
With the engine racing (4,000 rpm) measure wave±
form between terminals OX1, OX2 and E1 of engine
control module.
HINT: The correct waveform is as shown, oscillating be
tween approx. 0.1 V nd 0.9 V
If the oxygen sensor has deteriorated, the ampli±
tude of the voltage will be reduced as shown on the
left.
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±423
Page 1932 of 2543

DTC 22 Engine Coolant Temp. Sensor Circuit
CIRCUIT DESCRIPTION
The engine coolant temperature sensor senses the
coolant temperature. A thermistor built in the sensor
changes its resistance value according to the coolant
temperature. The lower the coolant temperature, the
greater the thermistor resistance value, and the higher
the coolant temperature, the lower thermistor resist-
ance value (See Fig. 1.).
The engine coolant temperature sensor is connected to
the ECM (See wiring diagram). The 5 V power source
voltage in the ECM is applied to the engine coolant tem-
perature sensor from the terminal THW via a resistor R.
That is, the resistor R an the engine coolant temperature
sensor are connected in series. When the resistance
value of the engine coolant temperature sensor
changes in accordance with the changes in the coolant
temperature the potential at the terminal THW also
changes. Based on this signal, the ECM increases the
fuel injection volume to improve driveability during cold
engine operation. If the ECM detects the diagnostic
trouble code 22, it operates the fail safe function in
which the engine coolant temperature is assumed to be
80°C (176°F).
DTC No.Diagnostic Trouble Code Detecting ConditionTrouble Area
Open or short in engine coolant temp. sen-
sor circuit for 0.5 sec. or more
Open or short in engine coolant temp.
sensor circuit
Engine coolant temp. sensor
ECM
Reference
VoltageEngine Coolant
Temp.
Resis±
tance
EG±424± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 1933 of 2543

(See page EG±404)
(1) Connect SST (check harness ªAº).
(See page EG±404)
(2) Turn ignition switch ON.
Measure voltage between terminals THW and E2
of engine control module connector.
Check for intermittent problems.
(See page EG±399)
Check engine coolant temp. sensor.
Replace engine coolant temp. sensor.
Repair or replace harness or connector.
Check and replace engine control module.
Check for open and short in harness and connector between engine control
module and engine coolant temp. sensor (see page IN±30).
Disconnect the engine coolant temp. sensor connector.
Measure voltage between terminals.
Resistance is within Acceptable Zone on chart.
Check voltage between terminals THW and E2 of engine control module con±
nector.
VoltageEngine Coolant Temp.
(Engine is cool)
(Engine is hot)
INSPECTION PROCEDURE
HINT: If diagnostic trouble codes º22º (engine coolant temperature sensor circuit), º24º (intake air temperature
sensor circuit) and º41º (throttle position sensor circuit) are output simultaneously, E2 (sensor ground)
may be open.
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±425
Page 1934 of 2543
DTC 24 Intake Air Temp. Sensor Circuit
CIRCUIT DESCRIPTION
The intake air temp. sensor is built into the volume air flow meter and senses the intake air temperature.
The structure of the sensor and connection to the ECM is the same as in the engine coolant temp. sensor shown
on page EG±424.
If the ECM detects the diagnostic trouble code º24º, it operates the fail safe function in which the
intake air temper-
ature
is assumed to be 20°C (68°F).
DTC No.
Diagnostic Trouble Code Detecting Condition
Trouble Area
24
Open or short in intake air temp. sensor circuit for Open or short in intake air temp. sensor circuit
Intake air tempsensor
24
Oen or short in intake air tem . sensor circuit for
0.5 sec. or more
Intake air temp. sensor
ECM
EG±426± ENGINE2JZ±GE ENGINE TROUBLESHOOTING
Page 1935 of 2543

(See page EG±404)
(1) Connect SST (check harness ªAº).
(See page
EG±404)
SST 09990±01000
(2) Turn ignition switch ON.
Measure voltage between terminals THW and E2 of en-
gine control module connector.
Check for intermittent problems.
(See page EG±399)
Check intake air temp. sensor.
Disconnect the volume air flow meter connector.
Measure voltage between terminals 1 and 2 of volume
air flow meter connector.
Resistance is within Acceptable Zone on chart.
Check voltage between terminals THA and E2 of engine control module con±
nector.
Replace intake air temp. sensor (Replace vol-
ume air flow meter).
Check for open and short in harness and connector between engine control
module and intake air temp. sensor (See page IN±30).
Repair or replace harness or connector.
Check and replace engine control module.
VoltageIntake air temp.
ResistanceIntake air temp.
INSPECTION PROCEDURE
HINT: If diagnostic trouble codes º22º (engine coolant temperature sensor circuit), º24º (intake air temperature
sensor circuit) and º41º (throttle position sensor circuit) are output simultaneously, E2 (sensor ground)
may be open.
± ENGINE2JZ±GE ENGINE TROUBLESHOOTINGEG±427
Page 1936 of 2543

CIRCUIT DESCRIPTION
See page EG±419 for the circuit description
DTC No.Diagnostic Trouble Code Detecting ConditionTrouble Area
(1) (Main heated*1) oxygen sensor voltage is
0.45 V or less (lean) for 90 sec. under codi±
tions (a) and (b):
(2 trip detection logic)*
2
(a) Engine coolant temp.: 70°C (158°F)
or more
(b) Engine speed: 1,500 rpm or more
(2)*1Difference of air±fuel ratio feedback
compensation value between front (No.
1 ~ 3 cylinders) and rear (No. 4 ~ 6
cylinders) is more than 15 percentage for
20 sec. or more under conditions (a)
and (b):
(2 trip detection logic)*
2
(a) Engine speed: 2,000 rpm or more
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(1)*1Difference of air±fuel ratio feedback
compensation value between front (No.
1 ~ 3 cylinders) and rear (No. 4 ~ 6
cylinders) is more than 15 percentage for
20 sec. or more under conditions (a)
and (b):
(2 trip detection logic)*
2
(a) Engine speed: 2,000 rpm or more
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(3)*1Engine speed varies by more than 15 rpm
over the preceding crank angle period
during a period of 20 sec. or more under
conditions (a) and (b):
(2 trip detection logic)*
2
(a) Engine speed: Idling
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
(2) Engine speed varies by more than 15 rpm
over the preceding crank angle period
during a period of 20 sec. or more under
conditions (a) and (b):
(2 trip detection logic)*
2
(a) Engine speed: Idling
(b) Engine coolant temp.: Between 60°C
(140°F) and 95°C (203°F)
*1: Only for California specification vehicles
*
2: See page EG±397.
Open or short in (main heated*1) oxygen
sensor circuit
(Main heated*
1) oxygen sensor
Ignition system
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
Open and short in injector circuit
Fuel line pressure (injector leak, blockage)
Mechanical system malfunction
(skipping teeth of timing belt)
Ignition system
Compression pressure (foreign object caught
in valve)
Volume air flow meter (air intake)
ECM
DTC 25 26 Air±Fuel Ratio Lean Rich Malfunction
EG±428± ENGINE2JZ±GE ENGINE TROUBLESHOOTING