Page 305 of 828
14-172412-02
6. ELECTRIC CIRCUIT DIAGRAM
Page 306 of 828
15-30000-00
1. ENGINE DATA LIST
Data Unit Value
Coolant temperature℃ 0.436 V (130℃) to 4.896 V (-40℃)
Intake air temperature℃ -40 to 130℃ (varies by ambient air
temperature or engine mode)
Idle speed rpm750 ± 20
Engine load % 18~25%
Mass air flow kg/h 16 to 25 kg/h
Throttle position angle°TA 0° (Full Open) to 78° (Close)
Engine torque Nm varies by engine conditions
Injection time ms 3 to 5ms
Battery voltage V 13.5 V to 14.1 V
Accelerator pedal position 1 V 0.4. to 4.8V
Accelerator pedal position 2 V 0.2 to 2.4 V
Throttle position 1 V 0.3 to 4.6 V
Throttle position 2 V 0.3 to 4.6 V
Oxygen sensor mV 0 to 5 V
A/C compressor switch 1=ON / 0=OFF -
Full load 1=ON / 0=OFF -
Gear selection (A/T) 1=ON / 0=OFF -
Knocking control 1=ON / 0=OFF -
Brake switch 1=ON / 0=OFF -
Cruise control 1=ON / 0=OFF -
Page 307 of 828
15-4
Glow plug
Differential pressure
sensor
Camshaft position
sensor
1. MAJOR COMPONENTS
Rear EGT sensor
Oxygen sensor
Front EGT sensor
HFM (air mass/
temperature)
Injector (C3I)
Variable swirl valve
actuator
IMV
Page 308 of 828
15-50000-00
Fuel rail pressure
sensorEGR valveFuel temperature
sensor
Electric throttle bodyKnock sensor
(2 ea)
Coolant temperature
sensor
T-MAP sensorD20DTR ECU
E-VGT actuator
Water sensorGCU (Preglow control
unit)
E-EGR bypass valve
Page 309 of 828
15-6
2. SYSTEM OPERATION
1) Input/Output of ECU
(1) ECU Block diagram
Page 310 of 828
15-70000-00
Fuel rail pressure
sensor
(2) Components for ECU Input
CAN
- ABS & ESP
- GCU
- Instrument
cluster
- TCUSwirl valve position
sensor
Differential
pressure sensorE-EGR valve
position sensorCamshaft position
sensorCoolant
temperature senso
r
Exhaust gas
temperature senso
r
HFM sensorOxygen sensorT-MAP sensor
Crankshaft position
sensor
Accelerator pedal
sensorThrottle position
sensorKnock sensor
-Auto cruise switch
- Rear right wheel
speed (without ABS)
- Refrigerant pressure
sensor
- Clutch pedal signal
- Blower switch signal
- Brake pedal signal
Water sensor
Page 311 of 828
15-8
(3) Components for ECU Output
CAN
E-EGR cooler
bypass valve
- Instrument cluster
- TCU
- Self diagnosis
PTC heaterCooling fan
E-EGR valve
Variable swirl valveE-VGT actuatorIMV valve
A/C compressorInjectorThrottle position
sensor
- Glow plug unit
- ABS & ESP unit
- GCU
Page 312 of 828

15-90000-00
2) ECU Control
(1) Function
a. ECU Function
ECU receives and analyzes signals from various sensors and then modifies those signals into
permissible voltage levels and analyzes to control respective actuators.
ECU microprocessor calculates injection period and injection timing proper for engine piston
speed and crankshaft angle based on input data and stored specific map to control the engine
power and emission gas.
Output signal of the ECU microprocessor drives pressure control valve to control the rail pressure
and activates injector solenoid valve to control the fuel injection period and injection timing; so
controls various actuators in response to engine changes. Auxiliary function of ECU has adopted
to reduce emission gas, improve fuel economy and enhance safety, comforts and conveniences.
For example, there are EGR, booster pressure control, autocruise (export only) and immobilizer
and adopted CAN communication to exchange data among electrical systems (automatic T/M
and brake system) in the vehicle fluently. And Scanner can be used to diagnose vehicle status
and defectives.
<00760097008c00990088009b00900095008e0047009b008c00940097008c00990088009b009c0099008c0047009900880095008e008c00470096008d0047006c006a007c00470090009a0047009500960099009400880093009300a000470054005b005700
47009b009600470052005f005c00b6006a004700880095008b> protected from factors like oil,
water and electromagnetism and there should be no mechanical shocks.
To control the fuel volume precisely under repeated injections, high current should be applied
instantly so there is injector drive circuit in the ECU to generate necessary current during injector
drive stages.
Current control circuit divides current applying time (injection time) into full-in-current-phase and
hold-current-phase and then the injectors should work very correctly under every working
condition.
b. Control Function
Controls by operating stages
To make optimum combustion under every operating stage, ECU should calculate proper
injection volume in each stage by considering various factors.
Starting injection volume control
During initial starting, injecting fuel volume will be calculated by function of temperature and
engine cranking speed. Starting injection continues from when the ignition switch is turned to
ignition position to till the engine reaches to allowable minimum speed.
Driving mode control
If the vehicle runs normally, fuel injection volume will be calculated by accelerator pedal travel
and engine rpm and the drive map will be used to match the drivers inputs with optimum
engine power. -
-
-