
AUTOMATIC 
TRANSMISSION
1
1
1
I 
L 
@ 
CD
@ 
@
ID 
@ 
@
h
r
H
@ 
@ 
@ 
@ 
@ 
@ 
@
4 
@ 
@
t
I
fA
TIl70
4 
t 
ill
pJrP
I
Transmission 
ase
II 
Governor 
Tightening 
torque 
T 
of
@T 
0 
5
to 
0 
7
2
Oil 
pump 
12
Output 
shaft 
bolts 
and 
nuts
kg 
rn 
ft 
Ib 
3 
6
to 
5 
1
3 
Front 
clutch
13 
Rear 
xtcnsion
@T 
0 
8
to 
1 
0
@T 
2 
0
to 
2 
5
4 
Band 
brake 
14
Oil
pan
@T 
5 
8 
to 
7 
2 
14 
to 
18
5 
Rear 
clutch 
15 
Control
valve 
4 
to 
5
@T 
1 
3 
to 
1
8
6 
Front
planetary 
gt 
ar
16
Input 
shaft
@T 
29
to 
36 
9
4 
to
13
7 
Rear
planetary 
gear 
17
Torque 
converter 
6 
5 
to 
7 
5
@T 
0 
55 
to 
0 
75
8 
One
way 
clutch 
18
Converter
housing
@T 
47
to 
54 
4 
0 
to 
5
4
9 
Low 
Reverse 
brake 
19 
Drive
plate 
0 
6 
h
Q 
8
Q 
T
0 
25 
to 
0 
35
10 
Oil 
distributor 
4 
3 
to
5 
8 
1
9 
to 
2 
5
Fig 
AT 
2 
Cross 
sectional 
uiew
of 
3N71 
B 
automatic 
transmission
I
AT 
3
l
t 

CHASSIS
HYDRAULIC 
CONTROL 
SYSTEM
l 
FUNCTIONS 
OF 
HYDRAULIC
CONTROL
UNIT
AND 
VALVES
Oil
pump
Manual
linkage
Vacuum
diaphragm
Downshift 
solenoid
Governor 
valve
Control
valve
assembly
HYDRAULIC 
SYSTEM 
AND
MECHANICAL 
OPERATION 
CONTENTS
P
range 
Park
R
range 
Reverse
N
range 
Neutral
D
range 
Low
gear
D2 
range 
2nd
gear
D3 
range 
Top 
gear
D
range 
kick 
down
2
range 
2nd
gear
1 
range 
Low
gear
12 
range 
2nd
gear
AT 
4
AT 
4
AT 
5
AT 
5
AT 
5
AT 
5
AT
7
AT13 
AT 
14
AT 
16
AT 
18
AT 
20
AT 
22
AT 
24
AT
26
AT 
28
AT 
30
AT 
32
FUNCTIONS 
OF
HYDRAULIC
CONTROL 
UNIT
AND 
VALVES
The
hydraulic 
control
system 
con
lain 
a 
oil
pump 
for
packing 
up 
oil
from 
the 
oil
pan 
through 
the 
oil
strainer 
A
shift 
control
is
provided 
by
two
centrifugally 
operated 
hydraulic
Oil
pump
Manual
linkage
Vacuum
diaphragm
Downshift
solenoid
Governor 
valve
Oil
pump
The 
oil
pump 
is 
the
source 
of
control 
medium 
in 
other 
words 
oil
for 
the 
control
system
The 
oil
pump 
is 
of
an 
internal
involute
gear 
type 
The 
drive 
sleeve 
is 
a
part 
of 
the
torque 
converter
pump 
governors 
on 
the
output 
shaft 
vacuum
control
diaphragm 
and 
downshift
solenoid
These
parts 
work
in
conjunc
tion
with 
valves 
in
the 
valve
body
I
I 
Control 
valve
impeller 
and 
serves 
to 
drive
the
pump
inner
gear 
with 
the
drive 
sleeve
direct
ly 
coupled 
with 
the
engine 
operation
The 
oil 
flows
through 
the
following
route
Oil
pan 
Oil 
strainer 
bottom
of 
the
control
valve 
Control 
valve 
lower
AT
4 
assembly 
located 
in 
the 
base 
of 
the
transmission 
The 
valves
regulate 
oil
pressure 
and
direct 
it
to
appropriate
transmission
components
I 
Torque 
converter
Front 
clutch
Rear 
clutch
Low
and 
reverse
brake
Band 
brake
Lubrication
body 
suction
port 
Transmission 
case
suction
port 
Pump 
housing 
suction
port
Pump 
gear 
space 
Pump
housing 
delivery
port 
Transmission
case
delivery 
port 
Lower
body
delivery 
port 
Control 
valve 
line
pressure 
circuit 

AUTOMATIC
TRANSMISSION
Manual
linkage
The 
hand 
lever 
motion
The 
hand
lever 
is 
located
in 
the 
driver
s 
com
part
men
mechanically 
transmitted 
from
the 
remote 
control
linkage 
is 
further
transmitted 
to 
the 
inner 
manual
lever
in
the 
transmission
case 
from 
the
range
selector 
lever 
in
the
right 
center
poc
tion
of 
the
transmission 
case
through
the 
manual
shaft 
The 
inner
manual
lever 
is
thereby 
turned
A
pin 
installed 
on
the 
bottom 
of
the 
inner 
manual 
lever 
slides 
the
manu
al
valve
spool 
of 
the
control 
valve 
and
thus 
the
spool 
is
appropriately 
posi
lioned
opposing 
to
each 
select
position
The
parking 
rod
pin 
is
held 
in 
the
groove 
on 
the
top 
of 
the 
inner
manual
plate 
The
parking 
rod
pin 
operates 
the
rod 
at 
p
range 
and
operates 
the
mechanical
lock
system
Moreover 
the 
above 
described
manual 
shaft 
is
equipped 
with 
an
inhibitor 
switch 
A
rotor 
inside 
the
inhibitor 
switch 
rotates 
in
response 
to
each
range 
When 
the
range 
is 
selected
at 
p 
or 
N 
the
rotor 
closes 
the
starter
magnet 
circuit 
so 
that 
the
engine 
can
be 
started 
When 
the
range
is 
selected
at 
R 
the
rotor 
closes 
the
back
up 
lamp 
circuit 
and 
the
back
up
lamp 
lights
Vacuum
diaphragm
The 
vacuum
diaphragm 
is 
installed
un 
the 
left
center
portion 
of 
the
transmission 
case 
The
internal 
con
struction 
of 
the 
vacuum
diaphragm 
is
as 
follows 
A 
rubber
diaphragm 
forms
a
partition 
in 
the 
center 
The
engine
intake 
manifold
negative 
pressure 
led
through 
vacuum 
tube 
and
spring 
force
are
applied 
to 
the 
front 
surface 
of 
the
rubber
diaphragm 
and
atmospheric
pressure 
is
applied 
to 
the 
back 
surface
A 
difference 
between 
pressure
applied
to
the 
front 
and 
back 
surfaces 
be
comes 
a
vacuum 
reaction 
and 
thus
the 
throttle 
valve 
of 
the
control 
valve
inside 
the 
transmission 
case 
is
op
erated
When 
accelerator
pedal 
is
fully 
de
pressed 
and 
the 
carburetor 
is
fully
upened 
but 
the
engine 
speed 
is 
not 
1
Housing
2 
Cover
3
Outer 
gear 
AT071
4 
Inner
gear
5 
Crescent
Fig 
AT 
3 
Oil
pump
1
Manual
plate
2
Inhibitor
switch 
A 
TOB7
3
Parking 
rod
4 
Manual
shaft
Fig 
AT 
4
Manuallinhage
To 
intake 
manifold
A
TOBB
Fig 
A 
T 
5
Vacuum 
diaphragm
iV
Down 
shift 
solenoid 
i
KiCk 
down
switch
A
TOB9
Fig 
A 
T 
6
Downshift 
solenoid
AT 
5 
sufficiently 
increased 
the 
manifold
negative 
pressure 
lowers
becomes
similar 
to 
the
atmospheric 
pressure
and 
the
vacuum 
reaction
increases
since
the 
flow
velocity 
of 
mixture
inside 
the 
intake 
manifold 
is
slow
Contrarily 
when 
the
engine 
speed
increases 
and
the 
flow
velocity 
of
the
mixture
increases 
or 
when
the 
carbure
tor 
is 
closed
the 
manifold
negative
pressure 
increases 
becomes 
similar 
to
vacuum 
and 
the
vacuum 
reaction
reduces
Thus 
a
signal 
to
generate 
hydraulic
pressure 
completely 
suited 
to
the
engine
loading 
at 
the
control 
valve 
is
transmitted 
from
the 
vacuum 
dia
phragm 
and
most 
suitable
speed
change 
timing 
and 
line
pressure 
are
obtained 
so
that 
the 
most
proper
torque 
capacity 
is
obtained
against 
the
transmitting
torque
Downshift
solenoid
The 
downshift
solenoid 
is
of 
a
magnetic 
type 
installed
on 
the 
left 
rear
portion 
of 
the
transmiSsion 
case
When
a
driver
requires 
accelerating 
power
and
depresses 
the 
accelerator
pedal
down 
to
the
stopper 
a
kick 
down
switch
located 
in 
the
middle 
of 
the
accelerator 
link 
is
depressed 
by 
a
push
rod 
the 
kick 
down 
switch 
closes 
cur
rent 
flows 
to
the 
solenoid 
the 
sole
noid
push 
rod 
is
depressed 
the
down
shift 
valve 
of
the 
control 
valve 
inside
the 
transmission
case 
is
depressed 
and
the
speed 
is
changed 
forcedly 
from
3rd 
to 
2nd 
within 
a
certain 
vehi
cle
speed 
limit
Note 
As 
the 
kick 
own
switch 
closes
when 
the 
accelerator
pedal 
is
depressed 
from 
7 
8 
to 
IS 
16 
of
the 
whole 
stroke 
the
accelera
tor
pedal 
should 
be
correctly
adjusted 
and 
fixed 
so 
as 
to
afford
complete 
stroke
The
arrangement 
of 
the 
switch
differs
according 
the 
models 
of
vehicle
Governor 
valve
The
primary 
and
secondary 
gover
nor 
valves 
are 
installed
separately 
on
the
back 
of 
the 
oil 
distributor 
on
the 

I 
transmission
output 
shaft
They
op
erate 
in 
the 
same
speed 
as 
that 
of 
the
output 
shaft 
In 
other 
wotds
they
operate 
at
a
speed 
in
proportion 
to 
the
vehicle
speed 
To 
those 
valves 
the
line
pressure 
is
applied 
as 
the
input
ftom 
the 
control 
valve
through 
the
transmission 
case 
rear
flange 
and 
oil
distributor 
The
governor 
pressure 
in
proportion 
to 
the
output 
shaft
speed
vehicle
speed 
is 
led
to 
the
shift
valve
of 
the 
control 
valve
through
inverse
rou 
te 
as 
the
output 
and 
thus
the
speed 
change 
and 
the 
line
pressure
are
controlled
Operation 
of
secondary
governor 
valve
The
secondary 
valve 
is 
a 
control
valve 
which 
receives
line
pressure 
I
and
controls 
the
governor 
pressure
When 
the 
manual
valve 
is
selected
D 
2
or 
1
range 
line
pres
sure 
is
applied 
to 
the
ring 
shape 
area 
of
f 
this
valve 
from 
circuit
I 
and
this
valve 
is
depressed 
toward 
the
center
side 
Movement 
of 
this 
valve 
to 
a
certain
position 
closes 
the 
circuit
from
I 
to
15
simultaneously 
while 
mak
ing 
a
space 
from 
the
15 
to 
the 
center
drain
port 
and
pressure 
in 
the
circuit
IS 
is
lowered
When
the 
vehicle 
is
stopped 
and 
the
centrifugal 
force 
of 
this 
valve 
is 
zero
the 
valve 
is
balanced 
In 
this 
a
gover
nor
pressure 
which 
is 
balanced 
with
the
spring 
force 
occurs 
on 
the
15
When 
the
vehicle 
is
started 
and 
the
centrifugal 
force 
increases 
this
valve
slightly 
moves 
to 
the 
outside 
and
when
the
space 
from
I 
to 
15
increases
space 
from 
the
15 
to 
the
drain
port 
reduces
simultaneously 
As
the 
result
governor 
pressure 
of 
the
15 
increases
and 
the
governor
pres
sure 
is
balanced 
with 
the 
sum 
of
centrifugal 
force 
and 
the
spring 
force
The
governor
pressure 
thus
changt 
s 
in
response 
to 
the
vehicle
speed
change
centrifugal 
force
Operation 
of
primary
governor
valve
The 
valve 
is
an 
ON 
OFF
valve
which 
closes 
the
governor
pressure
15
regulated 
by 
the
secondary
gover 
CHASSIS
nor 
valve 
when 
the 
vehicle
speed
reaches 
the
minimum
speed 
and
when
the 
vehicle
speed 
exceeds 
a 
certain
level
open 
the
governor 
and 
forwards
the
governor 
pressure 
15 
to 
the
control
valve
When 
the
vehicle 
is
stopped 
the
governor
pressure 
is
zero 
However
when 
the
vehicle 
is
running 
slowly
this 
valve
is
depressed 
to
the 
center
side
and 
the
groove 
to
the
IS 
is
closed 
since 
the
governor 
pressure
applied 
to 
the
ring
shape 
area 
is
higher
than 
the
centrifugal 
force 
of 
this
valve
When 
the
governor 
speed 
exceeds 
cer
tain
revolution 
the
governor
pressure
in 
the 
circuit 
15 
also
increases 
How
ever 
as 
the
centrifugal 
force 
increases
and 
exceeds
the
governor 
pressure 
this
valve
moves 
toward 
the 
outside 
and
the
governor 
pressure 
is 
transmitted
to
the 
circuit 
15
Two 
different
valves 
are
employed
in 
the
governor 
so 
that 
it 
will 
inde
pendently 
control
the
speed 
at
high
speed 
and 
at
low
speed 
That
is 
within
the
low
speed
range 
the
governor
pressure 
is 
not
generated 
owing 
to 
the
primary 
valve
whereas 
at
the
high
speed 
range 
above 
the
break
point 
a
governor
pressure 
regula 
ted
by 
the
sec0Hdary 
valve 
is
introduced
The 
break
point 
is 
the
point 
at
which 
the
function 
of 
one
of 
the
govp 
rnors 
is
transferred 
to 
the 
other
whee
the
speed
changes 
from
the
w
speed
range 
to
the
high 
speed
range
To 
con 
trol 
valve
Governor
pressure
tiS
y
ID
t
4
From 
control 
valve
Line
pressure 
I
J
I
Primary 
governor
2 
Secondar
governor
3 
Governor 
valve
body 
AT090
4
Oil 
distributor
5
Output 
shaft
Fig 
AT 
7 
Cross
sectional 
view
of
governor
AT 
6 
AT091
Fig 
A 
T 
B
Output 
shaft 
with 
oil
distributor 
and
governor
I 
Oil
distributor
2
Governor 
valve
body 
AT092
3
Primary
governor
valve
4
Secondary
governor
valve
Fig 
A
T
9
Exploded 
uiew
of
gouernor 

Control
valve
assembly 
AUTOMATIC 
TRANSMISSION
Oil
from
pump
ru 
nn
i
I 
I 
I
Throttle 
valve
I
I
1 
m 
nn
I 
Auxiliary 
valve
I
Regulator 
valve
j
Manual 
valve
I
Uoe
pressure
Speed 
change 
L
I 
Governor
valve
I 
I 
valve
J 
1 
1
Clutch 
and 
brake
Flow
chart 
of
control 
valve
system
The 
control 
valve
assembly 
receives
oil
from 
the
pump 
and 
the
individual
signals 
from 
the 
vacuum
diaphragm
and 
transmits 
the 
individual
line
pres
sures 
to 
the 
transmission 
friction
ele
ment
torque 
converter 
circuit 
and
lubricating 
system 
circuit
as 
the 
out
puts 
To 
be
more
specifically 
the 
oil
from 
the 
oil
pump 
is
regulated 
by 
the
regulator 
valve 
and 
line
pressures 
build
up 
The 
line
pressures 
are 
fed 
out 
from
the 
control 
valve
assembly 
as
they 
are
through 
various 
direction
changeover
valves
including 
ON
OFF 
valve 
and
regulator 
valves
newly 
reformed 
to 
a
throttle
system 
oil
pressure 
and
op
crates 
other 
valves
or
finally 
the 
line
pressure 
are 
transmitted 
to
the 
re
quired 
clutch 
or 
brake 
servo
piston
unit 
in
response 
to 
the
individual
running 
conditions 
after
receiving 
sig
nals 
from 
the
previously 
described
vacuum 
diaphragm 
downshift 
sole
noid
governor 
valve
and 
or
manual
linkage
The 
control 
valve
assembly 
consists
of 
the
following 
valves
Pressure
regulator 
valve
2 
Manual 
valve
3 
1st
2nd 
shift 
valve 
4
2nd 
3rd 
shift
valve
S
Pressure
modifier 
valve
6
Yacuum 
throttle 
valve
7
Throttle 
back
up 
valve
8 
Solenoid
downshift 
valve
9 
Second
lock 
valve
0
2nd 
3rd
timing 
valve
Pressure
regulator 
valve
PRV
The
pressure 
regulator 
valve
re
ceives
valve
spring 
force 
force 
from
plug 
created
by 
the 
throttle
pressure
16 
and 
line
pressure 
7 
and 
force
of
the
throttle
pressure 
18
With 
the
mutual
operations 
of 
those 
forces 
the
PRY
regulates 
the 
line
pressure 
7 
to
the
most 
suitable
pressures 
at 
the
individual
driving 
conditions
The 
oil 
from 
the 
oil
pump 
is
ap
plied 
to 
the
ring 
shaped 
area
through
orifice 
20 
As
the 
result 
the 
PRY 
is
depressed 
downward 
and
moves 
from
port 
7
up 
to 
such 
extent 
that 
the
space 
to 
the
subsequent 
drain
port
marked 
with 
x 
in
Figure 
AT 
10
opens 
slightly 
Thus 
the 
line
pressure
7 
is 
balanced 
with 
the
spring 
force
AT 
7 
and 
the 
PRY 
is
thereby 
balanced 
In
this 
the
space 
from 
the
port 
7
to 
the
subsequent 
converter 
oil
pressure 
14
circuit
has 
also 
been
opened 
As
the
result 
the
converter 
is 
filled 
with 
the
pressurized 
oil 
in 
the 
circuit 
14 
and
the
oil 
is
further 
u 
d
for 
the
Iubrica
tion 
of 
the 
rear 
unit 
Moreover
a
part
of 
the 
oil 
is
branched 
and
used 
for 
the
lubrication 
of 
front 
unit
for 
the 
front
and 
rear 
clutches
When 
the
accelerator
pedal 
is 
de
pressed 
the 
throttle
pressure 
16 
in
creases 
as
described 
in 
the
preceding
paragraph 
oil
pressure 
is
applied 
to
the
plug 
through 
orifice 
21 
and 
the
pressure 
is
added 
to 
the
spring 
force
As 
the
result 
the 
PRY 
is
contrarily
depressed 
upward 
space 
to 
the 
drain
port 
is
reduced 
and 
the 
line
pressure
7 
increases
Afl
II
Jwi 
06
A
J 
L 
I
7
I
tf
Iij
BL
i 
il
J
jti
r
x
r 
1 
J
I
l
I
X
6
C
l
o
ii 
J
f
A
T09S
Fig 
AT 
10 
Pressure
regulator 
value
tr 
r 

Low 
in
the
range 
I 
is
led 
to
the 
low
and 
reverse 
clutch 
from 
the
line
pressure 
5
through 
the 
line
pressure 
12 
and 
at 
the 
same 
time
the 
same 
is 
led 
to 
the 
left 
end
spring
unit
Consequently 
although 
the
go
vernor
pressure 
increases 
the 
valve 
is
still
depressed 
toward 
the
right 
and
the 
SFV 
is
fixed 
in 
the 
Low
posi
tion 
When
kicked 
down
at 
the
2nd
speed 
the 
SDV
operates 
and 
the
line
pressure 
13 
depresse 
the 
FSV 
to
ward 
the
right
Although 
the
governor
pressure 
15 
is
considerably 
high 
the
valve 
is
depressed 
completely 
toward
the
right 
and 
the
FSV 
is
returned 
to
the 
Low
position 
This
operation 
is
called 
Kick 
down
shift
2nd 
3rd 
shift 
valve 
SSV
The 
SSV 
is
a 
transfer 
vaIve 
which
shifts
speed 
from 
2nd 
to 
3rd
When 
the 
vehicle 
is
stopped 
the
SSV 
is
depressed 
toward 
the
right 
by 
the
spring 
and 
is 
in
the 
2nd
position 
It
is
provided 
however 
that 
the 
FSV
decides 
the
shifting 
either
to 
Low
or
2nd
When 
the
vehicle 
is
running 
the
governor
pressure 
15 
is
applied 
to
the
right 
end 
surface 
and 
the 
SSV 
is
depressed 
toward 
the
left
Contrarily
the
spring 
force 
line
pressure 
3 
and
throttle
pressure 
19
depress 
the
SSV
toward 
the
right
When 
the
vehicle
speed 
exceeds 
a
certain 
level 
the
governor
pressure
exceeds 
the 
sum 
of 
the
spring 
force
line
pressure 
and 
throttle
pressure 
the
valve 
is
depressed 
toward 
the 
left 
and
the 
line
pressure 
3 
is 
closed 
Conse
quently 
the 
forces
are 
rapidly 
un
balanced 
the 
force 
to
depress 
the 
SSV
toward 
the
right 
reduces 
and 
thus 
the
SSV 
is
depressed 
to 
the 
Ie 
ft 
end
for 
a
moment
With 
the 
SSV
depressed 
to
ward 
the
left 
end 
the 
line
pressure 
3
is
connected 
with 
the 
line
pressure
10 
the
band 
servo 
is 
released 
the
front 
clutch 
is
engaged 
and
speed 
is
shifted
to 
3rd
When
the 
accelerator
pedal 
is
de
pressed 
both 
the 
line
pressure 
3
and
the 
throttle
pressure 
19
are
high 
and 
AUTOMATIC 
TRANSMISSION
therefore 
the
SSV 
is
retained 
in
2nd 
unless 
ihe
governor 
pressure
IS 
exceeds
the 
line
pressure 
3 
and
the
throttle
pressure 
19
In
the 
3rd
position 
force 
to
depress 
the
SSV 
toward 
the
right 
is
remained
only 
on 
the 
throttle
pressure
16 
and
the 
throttle
pressure 
16 
is
slightly 
lower 
than 
that
toward 
the
right 
which 
is
applied 
while
shifting
from 
2nd 
to 
3rd
Consequently 
the 
SSV 
is 
returned
to 
the
2nd
position 
at 
a
slightly 
low
speed 
side
Shifting 
from 
3rd 
to
2nd
occurs 
at
a 
speed
slightly 
lower
than 
that 
for
2nd 
to 
3rd
shifting
When 
kicked 
down 
at 
the 
3rd
line
pressure 
13 
is 
led 
from 
the 
SDV
and 
the 
SSV 
is
depressed 
toward 
the
right 
Although 
the
governor 
pressure
is
considerably 
high 
the 
valve 
is
de
pressed 
completely 
toward 
the
right
and 
thus 
the 
SSV 
is 
returned 
to
2nd
position 
This
operation 
is
called 
Kick 
down 
shift
When 
the 
shift 
lever 
is 
shifted
to
2 
or 
I
range 
at 
the
3rd
speed
the 
line
pressure 
3 
is
drained 
at
the
MNV
Consequently 
the 
front 
clutch
operating 
and 
band 
servo
releasing 
oils
are 
drained 
As
the
res
lIt 
the 
trans
mission 
is 
shifted
to 
the 
2nd 
or
low
speed 
although 
the
SSV 
is 
in
the 
3rd
position
When 
the
speed 
is 
shifted 
to 
the
3rd 
a
one
way 
orifice 
24 
on 
the
top 
of 
the
SSV 
relieves 
oil
transmitting
velocity 
from 
the 
line
pressure 
3
to
the 
line
pressure 
10 
and 
reduces 
a
shock
generated 
from 
the
shifting
Contrarily 
when 
shifted 
from 
3rd
to 
2 
or
range 
and 
the
speed 
is
shifted 
to 
the 
2nd
spring 
of 
the 
orifice 
24 
is
depressed 
the 
throttle
becomes 
ineffective 
the
line
pressure
10 
is
drained
quickly 
and 
thus
delay 
in 
the
speed 
shifting 
is
elimi
nated
Throttle
of 
the
line
pressure 
6
relieves 
the 
oil
transmitting 
velocity
from 
the
line
pressure 
6 
to 
the
line
pressure 
10 
when
the 
lever 
is
shifted
to 
the
R
range 
and 
relieves 
drain
velocity 
from 
the 
line
pressure 
10 
to
the 
line
pressure 
6
when
shifting
from 
3rd 
to
2nd 
at
the 
D
range 
Thus 
the 
throttle 
of 
the 
line
pressure 
6 
reduces
a 
shock
generated
from 
the
shifting
A
plug 
in 
the 
SSV 
left
end
readjust
the 
throttle
pressure 
16 
which 
varie
depending 
on 
the
engine 
throttle 
con
dition 
to 
a
throttle
pressure 
19
suited 
to 
the
speed 
change 
control
Moreover 
the
plug 
is
a 
valve 
which
applies 
line
pressure 
13 
in
lieu 
of 
the
throttle
pressure 
to 
the
SSV 
and 
the
FSV 
when 
kick
down 
is
performed
When 
the 
throttle
pressure 
16 
is
applied 
to 
the 
left 
side 
of 
this
plug
and 
the
plug 
is
depressed 
toward 
the
right 
a 
slight
space 
is 
made 
from 
the
throttle
pressure 
16 
to
19 
A 
throt
tIe
pressure 
19 
which 
is 
lower
by 
the
pressure 
loss
equivalent 
to 
this
space 
is
generated 
the
pressure 
loss 
is 
added 
to
the
spring 
force 
and 
thus
the
plug 
is
depressed 
back 
from 
the
right 
to 
the
left
When 
this
pressure 
19 
increases
excessively 
the
plug 
is 
further 
de
pressed 
toward 
the 
left
space 
from
the
throttle
pressure 
19 
to 
the 
drain
circuit
13 
increases 
and 
the 
throttle
pressure 
19 
lowers 
Thus 
the
plug 
is
balanced 
and 
the
throttle
pressure
19 
is 
reduced 
in 
a
certain 
value 
b
3 
Orifice
t
checking 
valve
24
15
2 
2
i 
I
1 
c
V 
Y 
ii 
pr
W
jt1
iff
I 
W 
q
I 
nHH
J
L19
H 
10
15
AT 
9 
A
T098
Fig 
AT
13 
2nd 
3rd
shiflvalue 

4
to 
the
circuit
17 
is
timely 
closed
and 
with 
the
space 
from
the 
circuit
17 
to 
the
upper 
drain
being 
about 
to
open 
the
back
up
pressure 
17 
which
is
lower 
than 
the
line
pressure 
4
by
the
pressure 
loss 
due 
to 
the
space 
from
the 
circuit 
4 
to 
the 
circuit
17 
is
balanced 
with 
the
spring 
force
Further 
when
speed 
is
shifted 
from
2nd 
to
Low 
at
the
range 
I
line
pressure 
is
led 
from 
the
circuit
12
and 
the 
line
pressure 
is
applied
upward
to 
the 
bottom
of 
the
valve
through 
the
valve 
hole
Consequently 
the
valve 
is
depressed 
upward 
and 
locked 
As 
the
result
the
space 
from 
the
line
pressure
4 
to 
the
back
up 
pressure 
17
is
closed
completely 
and
the 
back
up
pressure 
17 
is 
drained
upward
AT101
Fig 
AT 
16
Throttle 
back
up 
valve
Solenoid 
downshift 
valve
SDV
This 
valve 
is
a 
transfer 
valve 
which
leads 
the
line
pressure 
7
to 
13 
and
transmits 
the
same 
to 
the 
FSV 
and
SSV 
when 
a 
kick
down
signal 
is 
re
ceived 
from
the 
downshift 
solenoid
Usually 
the 
solenoid
push 
rod 
and
valve 
are 
locked
upward 
by 
the
spring
in
the 
lower 
end 
and 
circuit 
from 
the
line
pressure 
4 
to 
the 
line
pressure
13 
is
opened
When
kick 
down 
is
performed 
the
push 
rod
operates 
the 
valve 
is
depres
sed 
downward 
and 
the 
circuit
from
the 
line
pressure 
7
to 
the 
line
pres
sure
13 
opens 
The 
line
pressure 
13
opposes 
the
governor 
pressure 
15 
at
the 
SSV 
and 
FSV 
and
thus
performs
the 
downshift
operation 
AUTOMATIC 
TRANSMISSION
AT102
Fig 
AT
17 
Solenoid
downshift 
value
Second 
lock 
valve 
SLV
This 
valve 
is 
a
transfer 
valve 
which
assists
the 
shift 
valve 
in 
order 
to
decide
the 
fixed 
2nd
speed 
at 
the 
2
range
In 
the
D
range 
the 
sum 
of
the
spring 
force 
and
line
pressure 
3
applied 
upward 
exceeds
the 
line
pres
sure 
2
which 
is
applied 
to 
the
valve
area
difference 
as 
the
downward
force
As 
the
result 
the
valve 
is
locked
upward 
and 
the
circuit
from 
the 
line
pressure 
8 
to 
the
line
pressure 
9 
is
opened
Consequently 
the 
FSV 
becomes
the 
2nd
speed 
condition 
and 
line
pressure 
is
led 
to 
the
band 
servo
engaging 
circuit 
9
only 
when 
the 
line
pressure
1 
is 
released
to 
the 
line
pressure 
8
In 
the
2
range 
the
upward 
force
is
retained
only 
on
the
spring 
and
the
downward
line
pressure 
2 
exceeds
the
upward 
force
As
the 
result 
the
valve 
is
locked
downward 
the 
line
pressure 
2 
is
released
to 
9
regardless 
of
the
operat
ing 
condition 
of 
the 
FSV 
and
the
band
servo 
is
engaged
2nd 
3rd
timing 
valve
TMV
This
valve 
is
a 
transfer 
valve 
which
switches 
the
by 
pass 
circuit 
of 
the
AT 
ll 
J
2
3
ATl03
Fig 
A 
T 
18
Second 
lock
ualue
orifice 
22 
in
the 
front 
clutch
pres
sure 
circuit 
II 
in
response 
to 
the
vehicle
speed 
and 
the
throttle 
con
dition 
A 
force 
created
when 
the
go
vernor
pressure 
15
applies 
to 
the
bottom 
of 
the
TMV 
is
used 
for 
the
upward 
force 
and 
a
force 
created
when
the
spring 
force
and 
the
throttle
pressure
apply 
to 
the
top 
of 
the
TMV
is 
used 
for
the 
downward 
force
When 
the
throttle
pressure 
16 
is
lower 
than
the
governor 
pressure 
15
the
upward 
force
exceeds 
the 
down
ward 
force 
the 
valve 
is 
locked
upward
and
passage 
from 
the 
circuit 
10
2nd 
from 
the
Top 
to 
the 
circuit
II 
is
closed
Consequently 
the
line
pressure 
10 
is 
led 
to
the 
front
clutch
circuit
1 
I
through 
the
orifice 
22
and
thus 
the 
oil
pressure 
is 
trans
mitted
slowly 
However 
under
the
normal
shifting 
the
throttle
pressure
16 
has 
a
pressure 
exceeding 
a 
certain
level 
and
the 
downward 
force 
exceeds
the
upward 
force 
As 
the 
result 
the
valve 
is 
locked 
downward 
the
passage
from 
the 
circuit
10 
to 
the 
circuit
1 
I 
is
opened 
and 
the
orifice 
22
is
disregarded
1
i 
16
I 
O
11
l1 
1
r
X
lp
I 
15
J
AT104
Fig 
AT 
19 
2nd
3rd
timing 
ualue 

AUTOMATIC 
TRANSMISSION
HYDRAULIC 
SYSTEM 
AND
MECHANICAL 
OPERATION
The
operating 
system 
of 
oil
pres
sure 
in 
each
range 
is
described 
below
The 
oil
pressure 
in 
each 
circuit
shown 
in
the 
illustration 
is 
classified 
as
follows
according 
to 
the 
function
The 
numerals
show 
the 
circuit
num
bers
Pressure
source 
of
the 
line 
7
Operating 
line
pressure 
for
friction
elements
I 
2 
3 
4 
5 
6
8 
9 
10 
II
12
Auxiliary 
line
pressure 
13
Pressure 
of
throttle
system
16 
17
18 
19
Others 
14 
15 
t
AT106
Fig 
AT 
22 
ld
Jltification 
of 
oil
channels 
in 
case
front
fac 
e
Discharge 
hole 
of 
oil
pump 
7
Torque 
c
nver
pre 
ure
14
co
t 
Re 
r
lutch
pressure 
l
Front 
clutch
pres5ure 
II
I
c 
Suction 
hole
of
t 
o
ump
lUlJJl 
0 
o
f
Governor
Dl5charge 
hol 
of 
011
pUf
lP 
7
pressure 
15
I
II
nl
1F
Jl
r
Torque 
converter 
o
L 
U
pres 
ure 
14
It 
0 
Servo 
release 
i 
I
prc 
sUre 
IO
Rear 
clutch
Servo
L
i
pres 
ure
I
0
6 
tightening 
19
iressu 
9 
01
Front
clutch
rJj 
low
reverse
pressure 
II 
0
C
lrv 
brake
pressure
Suction 
hole 
of 
oil
pump
s
6od 
OJ 
12
Governor 
feed
pressure 
I
ATlOS 
AT101
Fig 
AT 
21
Identification 
of 
oil
channels 
in 
oil
pu 
mp 
Fig 
AT 
23
Identification 
of 
oil
channels 
in 
case
face
AT 
13