CONSTRUCTION AND FUNCTION 7A1-9
Figure 7. Lock-up Control (Disengaged) Figure 8. Lock-up Control (Engaged)
OIL PUMP
The oil pump generating oil pressure is a small-size trochoid gear type oil pump. It feeds oil to the torque
converter, lubricates the power train mechanism, and feeds the oil pressure to the oil pressure control unit
under pressure.
The oil pump is located behind the torque converter. Sine the inner rotor in the oil pump is fitted with the
drive sleeve of the torque converter, it works by the power from the engine.
Figure 9. Construction of Oil Pump Figure 10. Location of Oil Pump
When the inner rotor in the oil pump rotates, ATF is sucked in from the oil pan, passed between the inner
rotor, outer rotor and crescent and discharged. This pressure discharged is sent to the pressure
regulator valve in the control valve and adjusted as required for operating the A/T. The flow rate under
pressure increases or decreases in proportion of the number of rotations.
Figure 11. Operation of Oil Pump
CONSTRUCTION AND FUNCTION 7A1-11
The JR405E consists of two sets of planetary gears, which are called front planetary gear and rear
planetary gear.
The sun gear of front planetary gear is fixed to the drive plates of 2-4 brake and reverse clutch.
The planetary carrier of front planetary gear is fixed to the drum of low clutch, the drive plates of low &
reverse brake and the hub of high clutch.
The internal gear of front planetary gear and the planetary carrier of rear planetary gear are connected as
one, and they are fixed to output shaft.
The sun gear of rear planetary gear is fixed to input shaft.
The internal gear of rear planetary gear is fixed to the hub of low clutch.
Clutch and Brake
Basic structure of the clutch and brake is shown in the figures below.
In the figure A, the clutch plates (drive plate and driven plate) are in the fluid so that they slip against each
other transmitting no power.
Figure B shows the condition where the oil pressure is acting on the piston. The clutch plates are fitted
to each other under pressure transmitting the rotations of the clutch drum to the clutch hub.
When the oil pressure is removed from the piston, the clutch returns to the condition in the figure A by the
return spring.
Figure 13. Basic Construction of Clutch and Brake
Low Clutch, High Clutch and Reverse Clutch (Multi-Plate Clutch)
The multi-plate clutch is composed of drive plates and driven plates. By applying the oil pressure onto
the end surface of the plates, the clutch is engaged or disengaged. The oil pressure is adjusted with the
control valve according to the signal from the TCM.
All clutches use dish plates to prevent uncontrolled operation of the clutches when engaged, causing a
shock.
For the reverse clutch, a piston check ball is used to release the oil pressure for the purpose of preventing
the clutch drag due to oil pressure generated by residual ATF because of the centrifugal force while the
clutch is racing (under no oil pressure).
For the low clutch and high clutch, a centrifugal balance chamber always full of ATF is provided to offset
the excessive oil pressure, for the purpose of preventing the clutch drag due to oil pressure generated by
residual ATF because of the centrifugal force while the clutch is racing (under no oil pressure).
The solenoid in the control valve is driven based on the speed change signal from TCM and moves the
shift valve, thereby engaging the drive plate and driven plate through the piston of each clutch.
Resultantly, elements of the planetary gear unit are combined.
When the oil pressure is removed, the piston returns to the original position by the force of the return
spring.
CONSTRUCTION AND FUNCTION 7A1-13
2-4 Brake and Low & Reverse Brake (Multi-Plate Brake)
The multi-plate brake is composed of drive plates and driven plates. By applying the oil pressure onto
the end surface of the plates, the clutch is engaged or disengaged. The oil pressure is adjusted with the
control valve according to the signal from the TCM.
All brakes use dish plates to prevent uncontrolled operation of the clutches when engaged, causing a
shock.
The solenoid in the control valve is driven based on the speed change signal from TCM and moves the
shift valve, thereby engaging the drive plate and driven plate through the piston of each clutch.
Resultantly, rotation of each element of the planetary gear unit is fixed.
When the oil pressure is removed, the piston returns to the original position by the force of the return
spring.
Figure 19. Construction of 2-4 Brake
Figure 20. Construction of Low & Reverse Brake
Low One-way Clutch
The low one-way clutch employs the sprag which locks the counterclockwise rotation of the front planetary
carrier and rear internal gear.
The one-way clutch outer race is fitted with the low clutch drum and the inner race with the transmission
case.
The outer race rotates freely clockwise but, when it attempts to rotate counterclockwise, the sprag
functions to lock the outer race.
When the vehicle is traveling in 1st gear in the D, 3 or 2range, the low one-way clutch locks the rear
internal gear via the low clutch. It is left free in the 2nd, 3rd or 4th gear position.
Figure 21. Construction of Low One-way Clutch
7A1-14 CONSTRUCTION AND FUNCTION
CONTROL VALVE
Employing the direct electronic control (Direct Electronic Shift Control: DESC) for the clutch pressure has
simplified the oil pressure circuit, reduced the number of functional components and made the control
valve compact.
The control valve body is divided into the upper body and lower body. All solenoids, oil pressure switch
and ATF thermo sensor are installed to the lower body.
Three-way valve type solenoids providing high responsibility are employed. Some of the solenoids are
switched between ON and OFF and others repeat ON and OFF at 50Hz (duty cycle system).
Functionally, some supply output pressure when power is not supplied and others drain the output
pressure.
When the solenoid is driven based on the signal from the TCM, the oil pressure is changed. The valve is
operated by the difference of the oil pressure.
Figure 22. Construction of Valve Body
7A1-16 CONSTRUCTION AND FUNCTION
Control Valve Fail-safe Function
To prevent interlocking due to engagement of more than three clutches and brakes at the same time, the
2-4 brake fail-safe valve A and B, and the low & reverse brake fail-safe valve A and B are provided.
When oil pressure is generated in the high clutch and the low clutch, the 2-4 brake solenoid is turned ON
to drain the oil pressure applied to the 2-4 brake.
When oil pressure is generated in the high clutch or 2-4 brake, the low & reverse brake solenoid is turned
ON to drain the oil pressure applied to the low & reverse brake.
Oil Pressure Switch
The oil pressure switch detects the oil pressure supply condition to the clutch and brake and sends the
detection result to the TCM.
The oil pressure switch is turned ON when the oil pressure reaches the switch working pressure and
turned OFF when the pressure decreases below the specified value.
The high clutch oil pressure switch detects the high clutch oil pressure, 2-4 brake oil pressure switch the
2-4 brake oil pressure, and the low & reverse brake oil pressure switch the low & reverse brake oil
pressure respectively.
Figure 27. Oil Pressure Switch Figure 28. Location of Oil Pressure Switch
7A1-18 CONSTRUCTION AND FUNCTION
Terminal Assembly
Pin No. Connected to Connected TCMPin No.
6 Line Pressure Solenoid B23
12 Low & Reverse Brake Oil Pressure Switch B12
5 Low & Reverse Brake Duty Solenoid B6
11 Ground Return B22
4 Lock-up Duty Solenoid B17
10 High Clutch Duty Solenoid B8
3 Low Clutch Duty Solenoid B9
9 2-4 Brake Duty Solenoid B7
2 Oil Thermo Sensor B4
8 Oil Thermo Sensor Ground B14
1 High Clutch Oil Pressure Switch B20
7 2-4 Brake Oil Pressure Switch B1
123456
891011127
Terminal Assembly Inhibitor Switch
Figure 31. Pin Assignment Figure 32. Location of Terminal Assembly
CONSTRUCTION AND FUNCTION 7A1-25
TRANSMISSION CONTROL MODULE (TCM)
The TCM is fitted side of brake pedal by means of two stud bolts.
The TCM judges necessary line pressure, gear shifting point and lock-up operation based on electrical
signals from switches and sensors and sends appropriate signals to solenoids.
Connect to White Connector Connect to Grey Connector
Figure 49. Pin Assignment
Pin No. Pin Assignment Pin No.Pin Assignment
B1 2-4 Brake Oil Pressure Switch A1 V BATT (Battery Back-up Power Supply)
B2 2 Range Switch A2 P Range Switch
B3 Turbine Sensor A3 Brake Switch
B4 ATF Thermo Sensor A4 3rd Start Indicator Lamp
B5 Ground A5 K-Line Signal (Tech 2 Serial Communication)
B6 Low & Reverse Brake Duty Solenoid A6 No Connection
B7 2-4 Brake Duty Solenoid A7 Engine Speed Sensor
B8 High Clutch Duty Solenoid A8 No Connection
B9 Low Clutch Duty Solenoid A9 No Connection
B10 N Range Switch A10 Vehicle Speed Sensor Out (2WD Only)
B11 D Range Switch A11 3rd START Select Switch
B12 Low & Reverse Brake Oil Pressure Switch A12 4L Mode Switch (4WD Only)
B13 Vehicle Speed Sensor A13 No Connection
B14 ATF Thermo Sensor Ground A14 No Connection
B15 Ground A15 No Connection
B16 No Connection A16 Throttle Position Sensor
B17 Lock-up Duty Solenoid A17 3 Range Switch
B18 Vign Ignition Power Supply) A18 DIAG Switch (Test Switch)
B19 R Range Switch A19 A/T OIL TEMP Indicator Lamp
B20 High Clutch Oil Pressure Switch A20 CHECK TRANS Indicator Lamp
B21 L Range Switch A21 POWER DRIVE Indicator Lamp
B22 Ground (Shift Solenoid) A22 No Connection
B23 Line Pressure Solenoid A23 No Connection
B24 Vign (Ignition Power Supply) A24 POWER DRIVE Select Switch
7A1-26 CONSTRUCTION AND FUNCTION
CONTROL MECHANISM
CONTENT OF FUNCTION AND CONTROL
Item Description
Line pressure control TCM issues a signal according to the vehicle traveling, engine load and other conditions to
TCM and the ON/OFF type line pressure solenoid is driven to switch the line pressure to
high or low pressure.
The line pressure solenoid is switched to the low pressure side when the solenoid is turned
ON (power supplied) and to the high pressure side when turned OFF (no power supplied).
In the forward travel range (D, 3, 2, L range), the line pressure decreases lower than that in
the P, N, and R range through the oil pressure circuit for the forward travel range.
Gear shift control The TCM issues a shift solenoid drive signal based on the traveling mode switch, inhibitor
switch, vehicle speed, throttle opening and other input signal to control the optimum gear
position automatically.
Speed change features have been set up to the TCM; the normal mode is suited to usual
traveling and the power mode is appropriate when the vehicle is loaded or accelerates the
speed.
In addition, speed change features used only for high oil temperature, hill climbing, and
down have been set up to the TCM, which are automatically switched depending on the
traveling conditions.
When the oil temperature is low (below 10C), speed change from the third to the fourth
speed is prohibited by the gear shift control.
Shift pattern selection
control
According to a vehicle condition, the TCM selects the following shift pattern.
Selection Priority Shift Pattern 3rd Start Lamp Power Drive Lamp
High High Temperature OFF OFF
3rd Start ON
4L
Power SW Off
OFF
Down Slop Power SW On
Power ON
Up Slope
Low Normal
OFF
OFF
- High temperature mode -
High temperature mode setting condition
ATF temperature: More than 123C
Above condition is met for more than 10 seconds.
High temperature mode cancel condition
ATF temperature: Less than 116C
Above condition is met for more than 10 seconds.
- 3rd start mode -
3rd start mode setting condition
3rd start switch: On Off (Pushed)
Vehicle speed: Less than 11km/h
ATF temperature: Less than 115C
Throttle position: Less than 8%
Select lever position: D range
Above conditions are met at the same time.
3rd start mode reset condition
3rd start switch: On Off again(Pushed again)
Vehicle speed: More than 34km/h
Select lever position: Other than D range
At least, one of above conditions is met.