COMPONENT PARTSEC-19
< SYSTEM DESCRIPTION > [HR16DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
Air Fuel Ratio Sensor 1INFOID:0000000012431272
The air fuel ratio (A/F) sensor 1 is a planar one-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is composed an elec-
trode layer, which transports ions. It has a heater in the element.
The sensor is capable of precise m
easurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range.
The exhaust gas components diffuse through the diffusion layer at
the sensor cell. An electrode layer is applied voltage, and this current
relative oxygen density in lean. Also this current relative hydrocar-
bon density in rich.
Therefore, the A/F sensor 1 is able to indicate air fuel ratio by this
electrode layer of current. In addition, a heater is integrated in the
sensor to ensure the required operating temperature of about 800 °C
(1,472 °F).
Air Fuel Ratio Sensor 1 HeaterINFOID:0000000012431273
SYSTEM DESCRIPTION
The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating
condition to keep the temperature of A/F s ensor 1 element within the specified range.
Camshaft Position SensorINFOID:0000000012431274
The camshaft position sensor senses the protrusion of camshaft to
identify a particular cylinder. The camshaft position sensor senses
the piston position.
When the crankshaft position sensor system becomes inoperative,
the camshaft position sensor provides various controls of engine
parts instead, utilizing timing of cylinder identification signals.
The sensor consists of a permanent magnet and Hall IC.
When engine is running, the high and low parts of the teeth cause
the gap with the sensor to change.
The changing gap causes the magnetic field near the sensor to
change.
Due to the changing magnetic fiel d, the voltage from the sensor
changes.
JMBIA0112GB
PBIB3354E
Sensor Input Signal to ECM ECM functionActuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS) Engine speed
Air fuel ratio (A/F) sensor 1
heater controlAir fuel ratio (A/F) sensor 1
heater
Mass air flow sensor Amount of intake air
PBIA9209J
Revision: August 2015 2016 Versa Note
cardiagn.com
COMPONENT PARTSEC-21
< SYSTEM DESCRIPTION > [HR16DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
Electric Throttle Control ActuatorINFOID:0000000012431279
Electric throttle control actuator consists of throttle control mo
tor, throttle position sensor, etc.
The throttle control motor is operated by the ECM and it opens and closes the throttle valve.
The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-
back to the ECM to control the throttle valve in response to driving conditions via the throttle control motor.
Engine Coolant Temperature SensorINFOID:0000000012431280
The engine coolant temperature sensor is used to detect the engine
coolant temperature. The sensor modifies a voltage signal from the
ECM. The modified signal returns to the ECM as the engine coolant
temperature input. The sensor uses a thermistor which is sensitive to
the change in temperature. The electrical resistance of the ther-
mistor decreases as temperature increases.
*: These data are reference values and are measured between ECM terminals.
Engine Oil Pressure SensorINFOID:0000000012431281
The engine oil pressure (EOP) sensor is detects engine oil pressure
and transmits a voltage signal to the ECM.
Engine Oil Temperature SensorINFOID:0000000012431282
The engine oil temperature sensor is used to detect the engine oil
temperature. The sensor modifies a voltage signal from the ECM.
The modified signal returns to the ECM as the engine oil tempera-
ture input. The sensor uses a thermistor which is sensitive to the
change in temperature. The electrical resistance of the thermistor
decreases as temperature increases.
SEF594K
Engine coolant temperature [ °C ( °F)] Voltage* (V) Resistance (k Ω)
–10 (14) 4.47.0 - 11.4
20 (68) 3.52.10 - 2.90
50 (122) 2.20.68 - 1.00
90 (194) 0.90.236 - 0.260
SEF012P
JSBIA0292ZZ
SEF594K
Revision: August 2015 2016 Versa Note
cardiagn.com
EC-24
< SYSTEM DESCRIPTION >[HR16DE]
COMPONENT PARTS
Heated Oxygen Sensor 2
INFOID:0000000012431289
The heated oxygen sensor 2, after three way catalyst (manifold),
monitors the oxygen level in the exhaust gas.
Even if switching characteristics of the air fuel ratio (A/F) sensor 1
are shifted, the air-fuel ratio is cont rolled to stoichiometric, by the sig-
nal from the heated oxygen sensor 2.
This sensor is made of ceramic zirconia. The zirconia generates volt-
age from approximately 1 V in richer conditions to 0 V in leaner con-
ditions.
Under normal conditions the heated ox ygen sensor 2 is not used for
engine control operation.
Heated Oxygen Sensor 2 HeaterINFOID:0000000012431290
SYSTEM DESCRIPTION
The ECM performs ON/OFF control of the heated oxy gen sensor 2 heater corresponding to the engine speed,
amount of intake air and engine coolant temperature.
OPERATION
Ignition Coil With Power TransistorINFOID:0000000012431291
The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns
ON and OFF the ignition coil primary circuit. This ON/O FF operation induces the proper high voltage in the coil
secondary circuit.
Intake Air Temperature SensorINFOID:0000000012431292
The intake air temperature sensor is built-into mass air flow sensor
(1). The sensor detects intake air temperature and transmits a signal
to the ECM.
The temperature sensing unit uses a thermistor which is sensitive to
the change in temperature. Electrical resistance of the thermistor
decreases in response to the temperature rise.
SEF327R
Sensor Input signal to ECM ECM function Actuator
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS) Engine speed
Heated oxygen sensor 2
heater controlHeated oxygen sensor 2 heater
Engine coolant temperature sensor Engine coolant temperature
Mass air flow sensor Amount of intake air
Engine speed Heated oxygen sensor 2 heater
Above 3,600 rpm OFF
Below 3,600 rpm after the following conditions are met.
• Engine: After warming up
• Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load ON
PBIA9559J
Revision: August 2015
2016 Versa Note
cardiagn.com
COMPONENT PARTSEC-27
< SYSTEM DESCRIPTION > [HR16DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
Refrigerant Pressure SensorINFOID:0000000012431299
The refrigerant pressure sensor is installed at the c
ondenser of the air conditioner system. The sensor uses an
electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent
to ECM, and ECM controls cooling fan system.
Stop Lamp Switch & ASCD Brake SwitchINFOID:0000000012431300
Stop lamp switch and ASCD brake switch are installed to brake pedal bracket.
ECM detects the state of the brake pedal by those two types of input (ON/OFF signal).
Throttle Control MotorINFOID:0000000012431301
The throttle control motor is operated by the ECM and it opens and closes the throttle valve.
The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-
back to the ECM to control the throttle valve in response to driving conditions via the throttle control motor.
Throttle Control Motor RelayINFOID:0000000012431302
Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle
control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends
an ON signal to throttle control motor relay and batte ry voltage is provided to the ECM. When the ignition
switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not
provided to the ECM.
Throttle Position SensorINFOID:0000000012431303
Electric throttle control actuator consists of throttle control motor,
throttle position sensor, etc. The throttle position sensor responds to
the throttle valve movement.
The throttle position sensor has two sensors. These sensors are a
kind of potentiometer which transform the throttle valve position into
output voltage, and emit the voltage signals to the ECM. The ECM
judges the current opening angle of the throttle valve from these sig-
nals and controls the throttle valve in response to driving conditions
via the throttle control motor.
ASCD Steering SwitchINFOID:0000000012431304
ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation
of switch, and determines which button is operated.
PBIB2657E
Brake pedal ASCD brake switch Stop lamp switch
Released ONOFF
Depressed OFFON
PBIB0145E
Revision: August 2015 2016 Versa Note
cardiagn.com
SYSTEMEC-33
< SYSTEM DESCRIPTION > [HR16DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
*1: M/T models
*2: CVT models
*3: This sensor is not used to contro
l the engine system under normal conditions.
*4: ECM determines the start signal status by the signals of engine speed and battery voltage.
*5: This signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). T he amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from the crankshaft position sensor, camshaft position sen-
sor and the mass air flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
• During warm-up
• When starting the engine
• During acceleration
• Hot-engine operation
• When selector lever position is changed from N to D (CVT models)
• High-load, high-speed operation
• During high engine speed operation
Sensor Input signal to ECM ECM functionActuator
Crankshaft position sensor (POS) Engine speed
*4
Piston position
Fuel injection & mixture
ratio controlFuel injector
Camshaft position sensor (PHASE)
Mass air flow sensor
Amount of intake air
Intake air temperature sensor Intake air temperature
Engine coolant temperature sensor Engine coolant temperature
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch
*1
PNP signal
Transmission range switch*2
Battery Battery voltage*4
Knock sensor Engine knocking condition
Heated oxygen sensor 2
*3Density of oxygen in exhaust gas
EPS control unit EPS operation signal
*5
Combination meter
Vehicle speed*5
BCMA/C ON signal*5
Blower fan signal*5
Revision: August 2015
2016 Versa Note
cardiagn.com
EC-34
< SYSTEM DESCRIPTION >[HR16DE]
SYSTEM
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback sys
tem provides the best air-fuel mixture ra tio for drivability and emission control.
The three way catalyst (manifold) can better reduce CO, HC and NOx emissions. This system uses A/F sen-
sor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the
injection pulse width according to the sensor voltage signal. For more information about A/F sensor 1, refer to
EC-19, "
Air Fuel Ratio Sensor 1". This maintains the mixture ratio within the range of stoichiometric (ideal air-
fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the th ree way catalyst (manifold). Even if the switching
characteristics of A/F sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated
oxygen sensor 2.
• Open Loop Control The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of heated sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D (CVT models)
- When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors t he mixture ratio signal transmitted from A/F sensor 1.
This feedback signal is then sent to the ECM. The ECM c ontrols the basic mixture ratio as close to the theoret-
ical mixture ratio as possible. However, the basic mi xture ratio is not necessarily controlled as originally
designed. Both manufacturing differences (i.e., mass ai r flow sensor hot wire) and characteristic changes dur-
ing operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value co mpared against the basic injection duration. Fuel trim
includes “short-term fuel trim” and “long-term fuel trim”.
“Short-term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-
oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in
fuel volume if it is lean.
“Long-term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the “short-term fuel trim” from the central value. Such deviation will occur due to individual engine differ-
ences, wear over time and changes in the usage environment.
PBIB2793E
Revision: August 2015 2016 Versa Note
cardiagn.com
SYSTEMEC-35
< SYSTEM DESCRIPTION > [HR16DE]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
FUEL INJECTION TIMING
Two types of systems are used.
• Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycl e according to the firing order. This system is used
when the engine is running.
• Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals
of the same width are simultaneously transmitted from the ECM.
The four injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or oper-
ation of the vehicle at excessively high speeds.
ELECTRIC IGNITION SYSTEM
ELECTRIC IGNITION SYSTEM : System DiagramINFOID:0000000012431311
ELECTRIC IGNITION SYSTEM : System DescriptionINFOID:0000000012431312
INPUT/OUTPUT SIGNAL CHART
SEF337W
JPBIA4883GB
Revision: August 2015 2016 Versa Note
cardiagn.com
EC-36
< SYSTEM DESCRIPTION >[HR16DE]
SYSTEM
*1: M/T models
*2: CVT models
*3: ECM determines the start signal status
by the signals of engine speed and battery voltage.
*4: This signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
Firing order: 1 - 3 - 4 - 2
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is re vised by the ECM according to the other data stored in
the ECM.
• At starting
• During warm-up
• At idle
• At low battery voltage
• During acceleration
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the \
knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
AIR CONDITIONING CUT CONTROL
SensorInput signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed
*3
Piston position
Ignition timing control Ignition coil (with power transistor)
Camshaft position sensor (PHASE)
Mass air flow sensor
Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch
*1
PNP signal
Transmission range switch*2
Battery Battery voltage*3
Knock sensorEngine knocking
Combination meter Vehicle speed
*4
Revision: August 2015 2016 Versa Note
cardiagn.com