SYSTEMEC-47
< SYSTEM DESCRIPTION > [QR25DE]
C
D E
F
G H
I
J
K L
M A
EC
NP
O
by input signals (for engine speed and intake air) from t
he crankshaft position sensor (POS), camshaft position
sensor (PHASE) and the mass air flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compens ated to improve engine performance under various operat-
ing conditions as listed below.
• When starting the engine
• During acceleration
• Hot-engine operation
• When selector lever is changed from N to D
• High-load, high-speed operation
• During deceleration
• During high engine speed operation
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system prov ides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better r educe CO, HC and NOx emissions. This system uses A/F
sensor 1 in the exhaust manifold to monitor whether t he engine operation is rich or lean. The ECM adjusts the
injection pulse width according to the sensor voltage si gnal. For more information about A/F sensor 1, refer to
EC-32, "Air Fuel Ratio (A/F) Sensor 1"
. This maintains the mixture rati o within the range of stoichiometric
(ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the th ree way catalyst (manifold). Even if the switching
characteristics of A/F sensor 1 shift, the air-fuel rati o is controlled to stoichiometric by the signal from heated
oxygen sensor 2.
• Open Loop Control
The open loop system condition refers to when the EC M detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of A/F sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D
- When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1.
This feedback signal is then sent to the ECM. The ECM cont rols the basic mixture ratio as close to the theoret-
ical mixture ratio as possible. However, the basic mi xture ratio is not necessarily controlled as originally
designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes dur-
ing operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value co mpared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
PBIB2793E
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
EC-48
< SYSTEM DESCRIPTION >[QR25DE]
SYSTEM
“Short term fuel trim” is the short-term fuel compensati
on used to maintain the mixture ratio at its theoretical
value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the the-
oretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in
fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carri ed out long-term to compensate for continual deviation
of the short term fuel trim from t he central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
FUEL INJECTION TIMING
Two types of systems are used.
• Sequential Multiport Fuel Injection System Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
• Simultaneous Multiport Fuel Injection System Fuel is injected simultaneously into all four cylinder s twice each engine cycle. In other words, pulse signals
of the same width are simultaneously transmitted from the ECM.
The four injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/ or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or oper-
ation of the vehicle at excessively high speeds.
ELECTRIC IGNITION SYSTEM
ELECTRIC IGNITION SYSTEM : System DescriptionINFOID:0000000009462095
SYSTEM DIAGRAM
SYSTEM DESCRIPTION
Firing order: 1 - 3 - 4 - 2
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
SEF337W
JPBIA3193GB
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
SYSTEMEC-49
< SYSTEM DESCRIPTION > [QR25DE]
C
D E
F
G H
I
J
K L
M A
EC
NP
O
The ECM receives information such as the injecti
on pulse width and camshaft position sensor (PHASE) sig-
nal. Computing this information, ignition si gnals are transmitted to the power transistor.
During the following conditions, the ignition timing is revi sed by the ECM according to the other data stored in
the ECM.
• At starting
• During warm-up
•At idle
• At low battery voltage
• During acceleration
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
INTAKE VALVE TIMING CONTROL
INTAKE VALVE TIMING CONTROL : System DescriptionINFOID:0000000009462096
INTAKE VALVE TIMING CONTROL
System Diagram
Input/Output Signal Chart
*: This signal is sent to the ECM through CAN communication line
JPBIA4760GB
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed and piston position
Intake valve
timing control Intake valve timing control
solenoid valve
Camshaft position sensor (PHASE)
Engine oil temperature sensor Engine oil temperature
Engine coolant temperature sensor Engine coolant temperature
Combination meter Vehicle speed*
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
EC-52
< SYSTEM DESCRIPTION >[QR25DE]
SYSTEM
When starting the engine by cold start, ECM judges the
locked/unlocked state when ignition switch is turned
ON. When judged as locked state (fixed at the intermedi ate phase), the intake valve timing intermediate lock
control solenoid valve is activated. Since oil pre ssure does not act on the lock key even when the engine is
started, the cam phase is fixed at the intermediate phas e and the intake valve timing control is not performed.
When the engine stops without locking the cam phase at the intermediate phase due to an engine stall and the
state is not judged as locked, the intake valve timing intermediate lock control solenoid valve and the intake
valve timing control solenoid valve are activated and the cam phase shifts to the advanced position to be
locked at the intermediate phase. Even when not locked in the intermediate lock phase due to no oil pressure
or low oil pressure, a ratchet structure of the camshaft sprocket (INT) rotor allows the conversion to the inter-
mediate phase in stages by engine vibration.
When engine coolant temperature is more than 60 °C, the intake valve timing is controlled by deactivating the
intake valve timing intermediate lock control so lenoid valve and releasing the intermediate phase lock.
When the engine is started after warming up, ECM releas es the intermediate phase lock immediately after the
engine start and controls the intake valve timing.
EXHAUST VALVE TIMING CONTROL
EXHAUST VALVE TIMING CONT ROL : System DescriptionINFOID:0000000009462097
SYSTEM DIAGRAM
INPUT/OUTPUT SIGNAL CHART
JPBIA4761GB
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed and piston position
Exhaust valve
timing control Exhaust valve timing control
solenoid valve
Camshaft position sensor (PHASE)
Engine oil temperature sensor Engine oil temperature
Exhaust valve timing control position
sensor Exhaust valve timing signal
Combination meter CAN commu-
nication Vehicle speed signal
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
SYSTEMEC-55
< SYSTEM DESCRIPTION > [QR25DE]
C
D E
F
G H
I
J
K L
M A
EC
NP
O
Intake Manifold Tuning Valve Operating Condition
ECM opens the intake manifold tuning valve when all of the following conditions are satisfied.
• Engine speed: 5,000 rpm or more
• Engine coolant temperature: -30 °C (-22 °F) or more
• Battery voltage: 16 V or less
ENGINE PROTECTION CONTROL AT LOW ENGINE OIL PRESSURE
ENGINE PROTECTION CONTROL AT LOW ENGINE OIL PRESSURE : System De-
scription
INFOID:0000000009462100
SYSTEM DIAGRAM
INPUT/OUTPUT SIGNAL CHART
SYSTEM DESCRIPTION
• The engine protection control at low engine oil pressure warns the driver of a decrease in engine oil pres-
sure by the oil pressure warning lamp a before the engine becomes damaged.
• When detecting a decrease in engine oil pressure at an engine speed less than 1,000 rpm, ECM transmits an oil pressure warning lamp signal to the combination meter.The combination meter turns ON the oil pres-
sure warning lamp, according to the signal.
*: When detecting a normal engine oil pressure, ECM turns OFF the oil pressure warning lamp.
FUEL FILLER CAP WARNING SYSTEM
JPBIA4922GB
Sensor Input signal to ECM ECM function Actuator
Engine oil pressure sensor Engine pressure Engine protection control
• Oil pressure warning lamp
signal
•FUel cut control Combination meter
• Oil pressure warning lamp
Crankshaft position sensor
(POS) Engine speed
Engine oil temperature sensor Engine oil temperature
Decrease in engine oil pressure Engine speed Combination meter
Fuel cut
Oil pressure warning lamp
Detection Less than 1,000 rpm ON* NO
1,000 rpm or more ON YES
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
EC-62
< SYSTEM DESCRIPTION >[QR25DE]
SYSTEM
EVAPORATIVE EMISSION SYSTEM : System Description
INFOID:0000000009462106
SYSTEM DIAGRAM
INPUT/OUTPUT SIGNAL CHART
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
JPBIA4896GB
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE) Engine speed*
1
EVAP canister
purge flow control EVAP canister purge vol-
ume control solenoid valve
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
(Mixture ratio fe edback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
EVAP control system pressure sensor Pressure in purge line
Combination meter Vehicle speed*
2
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
EC-66
< SYSTEM DESCRIPTION >[QR25DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
ON BOARD DIAGNOST
IC (OBD) SYSTEM
Diagnosis DescriptionINFOID:0000000009462110
This system is an on board diagnostic system that re cords exhaust emission-related diagnostic information
and detects a sensors/actuator-related malfunction. A ma lfunction is indicated by the malfunction indicator
lamp (MIL) and stored in control module memory as a DTC. The diagnostic information can be obtained with
the diagnostic tool (GST: Generic Scan Tool).
GST (Generic Scan Tool)INFOID:0000000009462111
When GST is connected with a data link connector equipped on the vehicle side, it will communicate with the
control module equipped in the vehicle and then enable various kinds of diagnostic tests. Refer to GI-51,
"Description".
NOTE:
Service $0A is not applied for regions where it is not mandated.
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
DIAGNOSIS SYSTEM (ECM)EC-75
< SYSTEM DESCRIPTION > [QR25DE]
C
D E
F
G H
I
J
K L
M A
EC
NP
O
• ECM blinks MIL for about 10 seconds if all SRT codes are not set.
MALFUNCTION WARNING MODE
Description
In this function ECM turns on or blinks MIL when it detects a malfunction in the emission control system com-
ponents and/or the powertrain control components (which affe ct vehicle emissions) to inform the driver that a
malfunction has been detected.
Operation Procedure
1. Turn ignition switch ON.
2. Check that MIL illuminates. If it remains OFF, check MIL circuit. Refer to EC-517, "Diagnosis Procedure"
.
3. Start engine and let it idle. • For two trip detection logic diagnoses, ECM turns on MIL when it detects the same malfunction twice in
the two consecutive driving cycles.
• For 1st trip detection logic diagnoses, ECM turns on MIL when it detects a malfunction in one driving cycle.
• ECM blinks MIL when it detects a malfunction t hat may damage the three way catalyst (misfire).
SELF-DIAGNOSTIC RESULTS MODE
Description
This function allows to indicate DTCs or 1st trip DTCs stored in ECM according to the number of times MIL is
blinking.
How to Set Self-diagnostic Results Mode
NOTE:
• It is better to count the time accurately with a clock.
• It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a mal-
function.
• After ignition switch is turned off, ECM is a lways released from the “self-diagnostic results” mode.
1. Confirm that accelerator pedal is fully releas ed, turn ignition switch ON and wait 3 seconds.
2. Repeat the following procedure quick ly five times within 5 seconds.
• Fully depress the accelerator pedal.
• Fully release the accelerator pedal.
3. Wait 7 seconds, fully depress the accelerator pedal and keep it depressed for approx. 10 seconds until the
MIL starts blinking.
NOTE:
Do not release the accelerator pedal for 10 seconds if MIL starts blinking during this period. This blinking
is displaying SRT status and is continued for another 10 seconds.
4. Fully release the accelerator pedal. ECM has entered to “Self-diagnostic results” mode.
JMBIA1515GB
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM