6E-44 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Signal or Continuity Tester Position Pin
No.
B/Box
No.
Pin Function Wire
Color
Key SW
Off Key SW
On Engine
Idle Engine
2000rpmECM
Connection Range(+) (-)
A14 A14 No Connection - - - - - - - - -
A15 A15 No Connection - - - - - - - - -
A16 A16 No Connection - - - - - - - - -
A17 A17 No Connection - - - - - - - - -
A18 A18 No Connection - - - - - - - - -
A19 A19 Intake Air
Temperature
(IAT) Sensor
Signal YEL/
GRN Less than 1V0 deg. C: Approx. 3.5V / 20 deg. C: Approx.
2.5V / 40 deg. C: Approx. 1.6V / 60 deg. C:
0.9V / 80 deg. C: 0.6V Connect DC V A19 B39
A20 A20 No Connection - - - - - - - - -
A21 A21 Engine Coolant
Temperature
(ECT) Sensor
Signal BLU/
RED Less than 1V0 deg. C: Approx. 3.6V / 20 deg. C: Approx.
2.4V / 40 deg. C: Approx. 1.4V / 60 deg. C:
3.4V / 80 deg. C: 2.6V Connect DC V A21 A22
A22 A22 EGR Valve &
ECT Sensor
Ground YEL/
BLK Continuity
with ground - - - Connect Ohm A22 GND
A23 A23 Crank Position
(CKP) Sensor
Signal YEL - - Wave form or approx. 1.9V Connect AC V A23 A25
A24 A24 Crank Position
(CKP) Sensor &
EGR Valve +5V
Supply RED/
BLU Less than 1V Approx. 5V Connect DC V A24 A25
A25 A25 Crank Position
(CKP) Sensor
Ground YEL/
BLK Continuity
with ground - - - Connect Ohm A25 GND
A26 A26 No Connection - - - - - - - - -
A27 A27 No Connection - - - - - - - - -
A28 A28 ECM Main
Relay BLU/
RED While main
relay is
activated:
Less than 1V
Main relay is
not activated:
10-14V Less than 1V Connect DC V A28 GND
A29 A29 No Connection - - - - - - - - -
A30 A30 No. 5 Ignition
Coil RED/
YEL - - Wave form - - - -
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-45
Signal or Continuity Tester Position Pin
No.
B/Box
No.
Pin Function Wire
Color
Key SW
Off Key SW
On Engine
Idle Engine
2000rpmECM
Connection Range(+) (-)
A31 A31 No. 3 Ignition
Coil RED/
BLU - - Wave form - - - -
A32 A32 No. 1 Ignition
Coil RED - - Wave form - - - -
A33 A33 Ground (Power) BLK/
RED Continuity
with ground - - - Disconnect Ohm A33 GND
A34 A34 No. 5 Injector GRN/
BLK Less than 1V Wave form or 12-14V Connect DC V A34 GND
A35 A35 No. 3 Injector BLU Less than 1V Wave form or 12-14V Connect DC V A35 GND
A36 A36 No. 1 Injector GRN/
WHT Less than 1V Wave form or 12-14V Connect DC V A36 GND
A37 A37 Ground (Case) BLK/
RED Continuity
with ground - - - Disconnect Ohm A37 GND
A38 A38 No Connection - - - - - - - - -
A39 A39 No Connection - - - - - - - - -
A40 A40 No Connection - - - - - - - - -
6E-46 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Connector B Port: View Looking Into ECM Cace
Signal or Continuity Tester Position Pin
No. B/Box
No. Pin Function Wire
Color
Key SW Off Key SW On Engine IdleEngine
2000rpm ECM
Connection Range (+) (-)
B1 B1 No Connection - - - - - - - - -
B2 B2 No Connection - - - - - - - - -
B3 B3 No. 2 Injector GRN/
ORG Less than 1V Wave form or 12-14V Connect DC V B3 GND
B4 B4 No. 4 Injector GRN/
RED Less than 1V Wave form or 12-14V Connect DC V B4 GND
B5 B5 No. 6 Injector GRN/
YELLess than 1V Wave form or 12-14V Connect DC V B5 GND
B6 B6 Ground
(Power) BLK Continuity
with ground - - - Disconnect Ohm B6 GND
B7 B7 No. 2 Ignition
Coil RED/
BLK- - Wave form - - - -
B8 B8 No. 4 Ignition
Coil RED/
WHT - - Wave form - - - -
B9 B9 No. 6 Ignition
Coil RED/
GRN - - Wave form - - - -
B10 B10 No Connection - - - - - - - - -
B11 B11 A/C
Compressor
Relay GRY/
RED Less than 1V A/C comp. is operated: Less than 1V
A/C comp. is not operated: 10-14V Connect DC V B11 GND
B12 B12 Tachometer
Output Signal BLK/
RED - - Wave form or
6.2V Wave form or
6.2V Connect AC V B12 GND
B13 B13 Idle Air Control
(IAC) Valve
Coil A High BLU Less than 1V Less than 1V / 10-14V Connect DC V B13 GND
B14 B14 Idle Air Control
(IAC) Valve
Coil B High BLU/
WHT Less than 1V Less than 1V / 10-14V Connect DC V B14 GND
B15 B15 Canister Purge
Solenoid Valve RED/
BLULess than 1V Wave form or 12-14V Connect AC V B15 GND
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-47
Signal or Continuity Tester Position Pin
No. B/Box
No. Pin Function Wire
Color
Key SW Off Key SW On Engine IdleEngine
2000rpm ECM
Connection Range (+) (-)
B16 B16 Idle Air Control
(IAC) Valve
Coil A Low BLU/
RED Less than 1V Less than 1V / 10-14V Connect DC V B16 GND
B17 B17 Idle Air Control
(IAC) Valve
Coil B Low BLU/
BLKLess than 1V Less than 1V / 10-14V Connect DC V B17 GND
B18 B18 Check Engine
Lamp
(Immobilizer
Control Unit
Terminal B7) BRN/
YELLess than 1V Less than 1VLamp is turned on:
Less than 1V
Lamp is turned off: 10-14VConnect DC V B18 GND
B19 B19 Fuel Pump
Relay GRN/
WHT Less than 1V While relay is
activated:
10-14V
Relay is not
activated:
Less than 1V10-14V Connect DC V B19 GND
B20 B20 Mass Air Flow
(MAF) Sensor BLK/
YELLess than 1V Approx. 0.47VApprox. 1.5V
at 750 rpmApprox. 2V Connect DC V B20 GND
B21 B21 Bank 1 Oxygen
Sensor Signal PNK Less than 1V Approx. 0.4V 0.1 - 0.9V Connect DC V B21 B22
B22 B22 Bank 1 Oxygen
Sensor Ground BLU/
YELContinuity
with ground - - - Connect Ohm B22 GND
B23 B23 Bank 2 Oxygen
Sensor Signal RED Less than 1V Approx. 0.4V 0.1 - 0.9V Connect DC V B23 B24
B24 B24 Bank 2 Oxygen
Sensor Ground BLU/
BLKContinuity
with ground - - - Connect Ohm B24 GND
B25 B25 To Data Link
Connector
No.6 BLK/
GRN - - - - - - - -
B26 B26 Throttle
Position
Sensor (TPS)
Signal BLU Less than 1V Approx. 0.5V Approx. 0.6V Connect DC V B26 B39
B27 B27 TPS & Cam
Position
Sensor +5V
Supply GRN Less than 1V Approx. 5V Connect DC V B27 B39
B28 B28 Camshaft
Position (CMP)
Sensor Signal BLU - - Wave form - - - -
B29 B29 Inhibitor Switch
(AT Only) BLK Less than 1V P or N range: Less than 1V
Other than P or N range: 10-14V Connect DC V B29 GND
B30 B30 Power Steering
Pressure
Switch GRN/
YELLess than 1V Pressure switch is turned on: Less than 1V
Pressure Switch is turned off: 10-14V Connect DC V B30 GND
B31 B31 A/C Thermo
Relay GRN/
BLKLess than 1V A/C request is activated: 10-14V
A/C request is not activated: Less than 1VConnect DC V B31 GND
6E-48 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Signal or Continuity Tester Position Pin
No. B/Box
No. Pin Function Wire
Color
Key SW Off Key SW On Engine IdleEngine
2000rpm ECM
Connection Range (+) (-)
B32 B32 Vehicle Speed
Signal
(Immobilizer
Control Unit
Terminal B8) WHT - - Wave form or approx. 6.5V at
20km/h Connect AC V B32 GND
B33 B33 Ignition Switch BLU/
YELLess than 1V 10-14V Connect DC V B33 GND
B34 B34 Back Up
Power Supply RED/
WHT 10-14V Connect DC V B34 GND
B35 B35 No Connection - - - - - - - - -
B36 B36 ECM Main
Relay RED/
BLUWhile main
relay is
activated:
10-14V
Main relay is
not activated:
Less than 1V 10-14V Connect DC V B36 GND
B37 B37 ECM Main
Relay RED/
BLUWhile main
relay is
activated:
10-14V
Main relay is
not activated:
Less than 1V 10-14V Connect DC V B37 GND
B38 B38 To Data Link
Connect to No.
2 GRN - - - - - - - -
B39 B39 TPS, MAF, IAT
& CMP Sensor
Ground RED Continuity
with ground - - - Connect Ohm B39 GND
B40 B40 No Connection - - - - - - - - -
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-53
Idle Air Control (IAC) Valve
Step
CoilAB CD
Coil A High
(EC M B13)On On
Coil A Low
(EC M B16)On On
Coil B High
(EC M B14)On On
Coil B Low
(EC M B17)On On
(IAC Valve Close Direction)
(IAC Valve Open Direction)
The idle air control valve (IAC) valve is two directional
and gives 2-way control. It has a stepping moto
r
capable of 256 steps, and also has 2 coils. With power
supply to the coils controlled steps by the engine control
module (ECM), the IAC valve's pintle is moved to adjus
t
idle speed, raising it for fast idle when cold or there is
extra load from the air conditioning or power steering.
By moving the pintle in (to decrease air flow) or out (to
increase air flow), a controlled amount of the air can
move around the throttle plate. If the engine speed is
too low, the engine control module (ECM) will retract the
IAC pintle, resulting in more air moving past the throttle
plate to increase the engine speed.
If the engine speed is too high, the engine control
module (ECM) will extend the IAC pintle, allowing less
air to move past the throttle plate, decreasing the
engine speed.
The IAC pintle valve moves in small step called counts.
During idle, the proper position of the IAC pintle is
calculated by the engine control module (ECM) based
on battery voltage, coolant temperature, engine load,
and engine speed.
If the engine speed drops below a specified value, and
the throttle plate is closed, the engine control module
(ECM) senses a near-stall condition. The engine control
module (ECM) will then calculate a new IAC pintle valve
position to prevent stalls. If the IAC valve is disconnected and reconnected with
the engine running, the idle speed will be wrong. In this
case, the IAC must be reset. The IAC resets when the
key is cycled "On" then "Off". When servicing the IAC, i
t
should only be disconnected or connected with the
ignition "Off".
The position of the IAC pintle valve affects engine start-
up and the idle characteristic of the vehicle.
If the IAC pintle is fully open, too much air will be
allowed into the manifold. This results in high idle
speed, along with possible hard starting and lean
air/fuel ratio.
Camshaft Position (CMP) Sensor
12
(1) Camshaft Position (CMP) Sensor
(2) EGR Valve
With the use of sequential multi-point fuel injection, a
hall element type camshaft position (CMP) is adopted to
provide information to be used in making decisions on
injection timing to each cylinder. It is mounted on the
rear of the left-hand cylinder head and sends signals to
the ECM.
One pulse is generated per two rotations of crankshaft.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-57
Starting Mode
When the ignition is first turned "ON," the ECM
energizes the fuel pump relay for two seconds to allo
w
the fuel pump to build up pressure. The ECM then
checks the engine coolant temperature (ECT) senso
r
and the throttle position sensor to determine the proper
air/fuel ratio for starting.
The ECM controls the amount of fuel delivered in the
starting mode by adjusting how long the fuel injectors
are energized by pulsing the injectors for very short
times.
Fuel Metering System Components
The fuel metering system is made up of the following
parts.
Fuel injector
Throttle Body
Fuel Rail
Fuel Pressure regulator
ECM
Crankshaft position (CKP) sensor
Camshaft position (CMP) sensor
Idle air control valve
Fuel pump
Fuel Injector
The sequential multi-port fuel injection fuel injector is a
solenoid operated device controlled by the ECM. The
ECM energizes the solenoid, which opens a valve to
allow fuel delivery.
The fuel is injected under pressure in a conical spray
pattern at the opening of the intake valve. Excess fuel
not used by the injectors passes through the fuel
pressure regulator before being returned to the fuel
tank.
Fuel Pressure Regulator
The fuel pressure regulator is a diaphragm-operated
relief valve mounted on the fuel rail with fuel pump
pressure on one side and manifold pressure on the
other side. The fuel pressure regulator maintains the
fuel pressure available to the injector at three times
barometric pressure adjusted for engine load. It may be
serviced separate.
If the pressure is too low, poor performance and a DTC
P0131, P0151, P0171, P0174, P1171 or P1174 will be
the result. If the pressure is too high, excessive odo
r
and/or a DTC P0132, P0152, P0172 or P0175 will be
the result. Refer to Fuel System Diagnosisfo
r
information on diagnosing fuel pressure conditions.
Fuel Rail
The fuel rail is mounted to the top of the engine and
distributes fuel to the individual injectors. Fuel is
delivered to the fuel inlet tube of the fuel rail by the fuel
lines. The fuel goes through the fuel rail to the fuel
pressure regulator. The fuel pressure regulato
r
maintains a constant fuel pressure at the injectors.
Remaining fuel is then returned to the fuel tank.
055RV009
Fuel Pump Electrical Circuit
When the key is first turned "ON," the ECM energizes
the fuel pump relay for two seconds to build up the fuel
pressure quickly. If the engine is not started within two
seconds, the ECM shuts the fuel pump off and waits
until the engine is cranked. When the engine is cranked
and the 58 X crankshaft position signal has been
detected by the ECM, the ECM supplies 12 volts to the
fuel pump relay to energize the electric in-tank fuel
pump.
An inoperative fuel pump will cause a "no-start"
condition. A fuel pump which does not provide enough
pressure will result in poor performance.
Camshaft Position (CMP) Sensor Signal
The ECM uses this signal to determine the position o
f
the number 1 piston during its power stroke, allowing
the ECM to calculate true sequential multiport fuel
injection. Loss of this signal will set a DTC P0341. If the
CMP signal is lost while the engine is running, the fuel
injection system will shift to a calculated sequential fuel
injection based on the last fuel injection pulse, and the
engine will continue to run. The engine can be restarted
and will run in the calculated sequential mode as long
as the fault is present, with a 1-in-6 chance of being
correct.
6E-70 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Fuel Quality
Fuel quality is not a new issue for the automotive
industry, but its potential for turning on the MIL (“Check
Engine" lamp) with OBD systems is new.
Fuel additives such as “dry gas" and “octane
enhancers" may affect the performance of the fuel. The
Reed Vapor Pressure of the fuel can also create
problems in the fuel system, especially during the spring
and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could sho
w
up as a Fuel Trim DTC due to excessive canister
loading. High vapor pressures generated in the fuel
tank can also affect the Evaporative Emission
diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the majo
r
fuel companies advertise that using “premium" gasoline
will improve the performance of your vehicle. Mos
t
premium fuels use alcohol to increase the octane rating
of the fuel. Although alcohol-enhanced fuels may raise
the octane rating, the fuel's ability to turn into vapor in
cold temperatures deteriorates. This may affect the
starting ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the MIL
(“Check Engine" lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition
system. If the ignition system is rain-soaked, it can
temporarily cause engine misfire and turn on the MIL
(“Check Engine" lamp).
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 5Km miles of driving. This type o
f
operation contributes to the fuel fouling of the spark
plugs and will turn on the MIL (“Check Engine" lamp).
Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the MIL
(“Check Engine" lamp) to turn on if the vehicle is no
t
maintained properly. Restricted air filters, fuel filters,
and crankcase deposits due to lack of oil changes o
r
improper oil viscosity can trigger actual vehicle faults
that were not previously monitored prior to OBD. Poo
r
vehicle maintenance can not be classified as a
“non-vehicle fault", but with the sensitivity of OBD
diagnostics, vehicle maintenance schedules must be
more closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an
excessive amount of mud on the wheels, can have the
same effect on crankshaft speed as misfire.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
One example would be that if the ECM detected a
Misfire fault, the diagnostics on the catalytic converte
r
would be suspended until Misfire fault was repaired. If
the Misfire fault was severe enough, the catalytic
converter could be damaged due to overheating and
would never set a Catalyst DTC until the Misfire faul
t
was repaired and the Catalyst diagnostic was allowed to
run to completion. If this happens, the customer may
have to make two trips to the dealership in order to
repair the vehicle.
Maintenance Schedule
Refer to the Maintenance Schedule.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical inspection:
Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
Inspect hoses that are difficult to see behind othe
r
components.
Inspect all wires in the engine compartment fo
r
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with ho
t
exhaust manifolds or pipes.