7A3-48 ON-VEHICLE SERVICE (AW30 –40LE)
11. Install the suspension crossmember.
Torque: 65 N
m (6.6 kg
m/48 lb ft)
12. Install filler tube and insert oil level gage.
Torque: 22 N
m (2.2 kg
m/16 lb ft)
13. Install select cable by connecting inner cable to
select lever and installing outer cable with bracket.
14. Install the fuel pipe brackets to the transmission. Install the fuel pipe clips with the pipes to the
bracket.
P1010010
15. Connect the transmission harness connectors and
clips.
16. Connect transmission oil cooler pipes to A/T.
Torque: 44 N
m (4.5 kg
m/33 lb ft)
17. Install oil cooler pipe clamp and bracket to the
converter housing.
18.Tighten oil cooler pipe clamp bolt at the engine
mount side.
P1010024
19. Install the transfer case assembly.(4WD only)
Apply a thin coat of molybdenum disulfide grease
to the input shaft spline as shown in the figure.
260R300001
Install the transfer case assembly.
7A4–128 UNIT REPAIR (AW30–40LE)
Main Data and Specifications
General Specifications
Remaks
Model AW30–40LE
Engine 6VE1 (3.5L)
Type Electronic control planetary gear type
3–element 1–stage 2–phase type
(with lock-up mechanism)
Gear ratio 1st 2.804
2nd 1.532
3rd 1.000
4th (O/D) 0.705
Reverse 2.394
Oil used Name BESCO ATF III
Q'ty (l) 8.7
Torque converter 2100 150 Stall speed (rpm)
Friction element
Forward clutch C–15
Number of discs Direct clutch C–24
OD direct clutch C–02
Second coast brake B–1 40 mm Band width or
Number of discs
Second brake B–25
Number of discs First and reverse brake B–36
Overdrive brake B–04
Clutch
One-way clutch No.1 F–122
Number of
sprage One-way clutch No.2 F–228
OD one-way clutch F–024
Planetary gear
Front planetary Sun gear 42
Number of teeth Pinion gear 19
Ring gear 79
Rear planetary Sun gear 33
Pinion gear 23
Ring gear 79
O/D planetary Sun gear 33
Pinion gear 23
Ring gear 79
CONSTRUCTION AND FUNCTION 7A1-1
SECTION 7A1
CONSTRUCTION AND FUNCTION
TABLE OF CONTENTS
PAGE
DESCRIPTION ..............................................................................................................................7A1- 3
CONSTRUCTION ....................................................................................................................7A1- 3
MAIN DATA AND SPECIFICATION .....................................................................................7A1- 4
NUMBER PLATE LOCATION ...............................................................................................7A1- 5
ELECTRONIC CONTROL COMPONENTS LOCATION ..................................................7A1- 6
TRANSMISSION CONTROL UNIT (TCM) PERIPHERAL CIRCUIT ..............................7A1- 7
STRUCTURE AND FUNCTION OF COMPONENT ...........................................................7A1- 8
TORQUE CONVERTER (WITH LOCK-UP FUNCTION) ..................................................7A1- 8
OIL PUMP .................................................................................................................................7A1- 9
INPUT SHAFT ..........................................................................................................................7A1- 10
OUTPUT SHAFT ......................................................................................................................7A1- 10
GEAR SHIFTING MECHANISM ............................................................................................7A1- 10
CONTROL VALVE ...................................................................................................................7A1- 14
OIL PASSAGE .........................................................................................................................7A1- 19
PARKING FUNCTION .............................................................................................................7A1- 20
INHIBITOR SWITCH ...............................................................................................................7A1- 21
TURBINE SENSOR .................................................................................................................7A1- 22
SPEED SENSOR .....................................................................................................................7A1- 22
THROTTLE POSITION SENSOR (TPS) .............................................................................7A1- 23
ENGINE SPEED SENSOR (=TDC SENSOR) ....................................................................7A1- 23
BRAKE SWITCH ......................................................................................................................7A1- 24
MODE SELECT SWITCH .......................................................................................................7A1- 24
TRANSMISSION CONTROL MODULE (TCM) ..................................................................7A1- 25
CONTROL MECHANISM ............................................................................................................7A1- 26
CONTENT OF FUNCTION AND CONTROL ......................................................................7A1- 26
CONTROL ITEM, INPUT AND OUTPUT .................................................................... 7A1- 29
LINE PRESSURE CONTROL ..................................................................................... 7A1- 30
7A1-6 CONSTRUCTION AND FUNCTION
ELECTRONIC CONTROL COMPONENTS LOCATION
4WD Only 4WD Only
Instrument panel (Meter)
Speed meter (2WD Only)
Shift position indicator lamp
POWER DRIVE, 3rd START
indicator lamp
A/T OIL TEMP indicator lamp
CHECK TRANS indicator lam
p
Brake pedal
Brake Switch
Select lever
Power Drive
, 3rd Start select switch
Transmission Control Module (TCM)
Electrical source
Ignition
Battery voltage
Speed sensor
Turbine sensor
Inhibitor switch
ATF thermo sensor
High clutch oil pressure switch
2-4 brake oil pressure switch
Low & Reverse brake oil pressure
switch
Line pressure solenoid
Low clutch solenoid
High clutch solenoid
2-4 brake solenoid
Low & Reverse brake solenoid
Lock-up solenoid
Transmission
Transfer Control Module
Transfer
4L mode switch
Engine
Engine speed sensor
Throttle Position Sensor
Engine Control Module (ECM)
Data link connector
7A1-8 CONSTRUCTION AND FUNCTION
STRUCTURE AND FUNCTION OF COMPONENT
TORQUE CONVERTER (WITH LOCK-UP FUNCTION)
The torque converter is a device for transmitting the engine torque to the transmission. It transmits power
by means of oil when the lock-up is disengaged and by means of a lock-up piston when it is engaged.
The torque converter is of the symmetrical, three-element, single-stage, two-phase type.
As shown in the drawing, the symmetrical three-elements refer to three elements (components) consisting
of impeller (1), turbine (2) and stator (3) that are arranged symmetrically (figure 5).
"Single-stage" means that there is only one turbine as an output element; "two-phase" means that the
pump impeller acts as a torque converter when the turbine speed is comparatively low, and as a fluid
coupling when the speed is high.
1. Pump Impeller
2. Turbine Runner
3. Stator
1. Pump Impeller
2. Turbine Runner
3. Stator
4. Converter Cover
5. One-way Clutch
6. Lock-up Piston
7. Torsion Damper
Figure 5. Torque Converter
Figure 6. Construction of Torque Converter
Lock-up mechanism
"Lock-up" refers to a fixed state of the lock-up piston inside the torque converter and thus connects the
engine directly to the transmission.
The hydraulic pressure for the lock-up control is supplied from two circuits.
When the lock-up is disengaged (Figure 7)
When the lock-up is disengaged, the torque converter operating pressure is supplied from the oil passage
(A) to between the cover and the lock-up piston, and separates the lock-up piston clutch facing and
converter cover.
As a result, the engine drive power is transmitted from the converter cover to the pump impeller, the ATF
and to the turbine. The torque converter function as a fluid connector in this condition.
The torque converter operating pressure is supplied from the oil passage (A), passes through the oil
passage (B).
When the lock-up is engaged (Figure 8)
When the lock-up is engaged, the torque converter operating pressure is supplied from oil passage (B) to
the oil pump impeller, turbine, then to the stator side. The oil between the lock-up piston and converter
cover is drained.
Since the force acting on the right side of the lock-up piston is greater than force on the left side, it
connects the lock-up piston clutch facing with the converter cover, thereby increasing the transmission
efficiency.
CONSTRUCTION AND FUNCTION 7A1-9
Figure 7. Lock-up Control (Disengaged) Figure 8. Lock-up Control (Engaged)
OIL PUMP
The oil pump generating oil pressure is a small-size trochoid gear type oil pump. It feeds oil to the torque
converter, lubricates the power train mechanism, and feeds the oil pressure to the oil pressure control unit
under pressure.
The oil pump is located behind the torque converter. Sine the inner rotor in the oil pump is fitted with the
drive sleeve of the torque converter, it works by the power from the engine.
Figure 9. Construction of Oil Pump Figure 10. Location of Oil Pump
When the inner rotor in the oil pump rotates, ATF is sucked in from the oil pan, passed between the inner
rotor, outer rotor and crescent and discharged. This pressure discharged is sent to the pressure
regulator valve in the control valve and adjusted as required for operating the A/T. The flow rate under
pressure increases or decreases in proportion of the number of rotations.
Figure 11. Operation of Oil Pump
7A1-10 CONSTRUCTION AND FUNCTION
INPUT SHAFT
The input shaft has some oil holes, through which lubricating ATF is supplied to the torque converter,
bearings, etc.
The input shaft is fitted the turbine runner in the torque converter, reverse & high clutch drum and rear sun
gear by means of the spline. Therefore, the engine driving force received by the torque converter is
transmitted to the reverse & high clutch drum and rear sun gear.
OUTPUT SHAFT
The output shaft has some oil holes, through which the lubricating ATF is supplied to the bearings,
planetary gear unit, etc.
The output shaft transmits the engine driving force from the planetary gear to the propeller shaft.
The front internal gear is fitted with the rear carrier assembly by spline. The parking gear is also fitted by
spline. By fixing this gear mechanically, the output shaft is fixed as required when parking the vehicle.
GEAR SHIFTING MECHANISM
The JR405E consists of two sets of planetary gears, three multiple plate clutches, two multiple plate
brakes and a one-way clutch. They are activated in different combinations in any of four forward and one
reverse gear positions.
Principle of gear shifting (Figure 12)
Planetary gears have the advantage of a compact configuration because of the way they are constructed
with a single central shaft.
Also, unlike the manual transmission gears that require changing of gear mesh, the gear ratio of the
planetary gears can be changed more easily by locking, releasing or rotating only some of their parts.
A planetary gear is made up of a sun gear (1) at its center and pinion gears (2) each of which rotates
about its own center and also along the sun gear, as shown. They are all called in the internal gear (3).
Also, since the pinion gears are further supported by the planetary carrier (4), they rotate as a unit in the
same direction and at the same rate.
As shown above, each planetary gears are constructed of three elements; a sun gear, pinion gears, and
internal gear and a planetary carrier. Gear shifting is achieved by conditioning two of the three elements
namely the sun gear, internal gear and the planetary carrier.
The planetary gears are locked by the clutch, brake and one-way clutch according to the gear shifting.
1. Sun Gear
2. Pinion Gear
3. Internal Gear
4. Planetary Carrier
Figure 12. Planetary Gear
CONSTRUCTION AND FUNCTION 7A1-21
INHIBITOR SWITCH
The inhibitor switch is installed on the right side of the transmission main unit to detect the select lever
position.
The inhibitor switch is connected with the starter SW circuit. The engine cannot be started when the
select lever is at any position other than the P or N range.
By moving the select lever, the combination of the inhibitor switch pins is changed. The current range of
TCM is detected based on the combination of the pins.
10 7 3 2 4 8 5 1 9 6
P
R
N
D
3
2
L
6345
10987
21
Terminal Assembly Inhibitor Switch
Figure 36. Pin Assignment Figure 37. Location of Inhibitor Switch