TROUBLE DIAGNOSIS - SPECIFICATION VALUE
EC-95
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
TROUBLE DIAGNOSIS - SPECIFICATION VALUEPFP:00031
DescriptionBBS005CB
The specification (SP) value indicates the tolerance of the value that is displayed in “DATA MONITOR (SPEC)”
mode of CONSULT-II during normal operation of the Engine Control System. When the value in “DATA MONI-
TOR (SPEC)” mode is within the SP value, the Engine Control System is confirmed OK. When the value in
“DATA MONITOR (SPEC)” mode is NOT within the SP value, the Engine Control System may have one or
more malfunctions.
The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the
MI.
The SP value will be displayed for the following three items:
B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board cor-
rection)
A/F ALPHA-B1 (The mean value of air-fuel ratio feedback correction factor per cycle)
MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)
Testing ConditionBBS005CC
Vehicle driven distance: More than 5,000 km (3,107 miles)
Barometric pressure: 98.3 - 104.3 kPa (0.983 - 1.043 bar, 1.003 - 1.064 kg/cm2 , 14.25 - 15.12 psi)
Atmospheric temperature: 20 - 30°C (68 - 86°F)
Engine coolant temperature: 75 - 95°C (167 - 203°F)
Engine speed: Idle
Transmission: Warmed-up
–After the engine is warmed up to normal operating temperature, drive vehicle until “FLUID TEMP SE” (A/T
fluid temperature sensor signal) indicates more than 60°C (140°F).
Electrical load: Not applied
–Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight
ahead.
Inspection ProcedureBBS005CD
NOTE:
Perform “DATA MONITOR (SPEC)” mode in maximum scale display.
1. Perform EC-40, "
Basic Inspection" .
2. Confirm that the testing conditions indicated above are met.
3. Select “B/FUEL SCHDL”, “A/F ALPHA-B1” and “MAS A/F SE-
B1” in “DATA MONITOR (SPEC)” mode with CONSULT-II.
4. Make sure that monitor items are within the SP value.
5. If NG, go to EC-96, "
Diagnostic Procedure" .
SEF601Z
EC-116
[QR]
DTC P0011 IVT CONTROL
DTC P0011 IVT CONTROLPFP:23796
DescriptionBBS005CP
SYSTEM DESCRIPTION
*: This signal is sent to the ECM through CAN communication line.
This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake
valve.
The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant
temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid
valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to
increase engine torque in low/mid speed range and output in high-speed range.
COMPONENT DISCRIPTION
Intake valve timing control solenoid valve is activated by ON/OFF
pulse duty (ratio) signals from the ECM.
The intake valve timing control solenoid valve changes the oil
amount and direction of flow through intake valve timing control unit
or stops oil flow.
The longer pulse width advances valve angle.
The shorter pulse width retards valve angle.
When ON and OFF pulse widths become equal, the solenoid valve
stops oil pressure flow to fix the intake valve angle at the control
position.
CONSULT-II Reference Value in Data Monitor ModeBBS005CQ
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed
Intake valve
timing controlIntake valve timing control
solenoid valve Engine coolant temperature sensor Engine coolant temperature
Wheel sensor Vehicle speed*
PBIB3278E
PBIB1842E
MONITOR ITEM CONDITION SPECIFICATION
INT/V TIM (B1)
Engine: After warming up
Air conditioner switch: OFF
Shift lever: N
No loadIdle−5° - 5°CA
2,000 rpm Approx. 0° - 20°CA
ENGINE CONTROL SYSTEM
EC-359
[VQ]
C
D
E
F
G
H
I
J
K
L
MA
EC
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses
heated oxygen sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about
heated oxygen sensor 1, refer to EC-486, "
DTC P0132, P0152 HO2S1" . This maintains the mixture ratio
within the range of stoichiometric (ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of heated oxygen sensor 1 or its circuit
Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen
sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to
the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as orig-
inally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic
changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared
to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an
increase in fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
PBIB2938E
EC-360
[VQ]
ENGINE CONTROL SYSTEM
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The six fuel injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or oper-
ation of the vehicle at excessively high speed.
Electronic Ignition (EI) SystemBBS004XK
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
Firing order: 1 - 2 - 3 - 4 - 5 - 6
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is revised by the ECM according to the other data stored in
the ECM.
At starting
During warm-up
At idle
At low battery voltage
SEF179U
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
2
Piston position
Ignition timing
controlPower transistor Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
2
Wheel sensor
Vehicle speed*1
EC-428
[VQ]
TROUBLE DIAGNOSIS
DATA MONITOR MODE
Monitored Item
×: Applicable
Monitored item
[Unit]ECM
INPUT
SIGNALSMAIN
SIGNALSDescription Remarks
ENG SPEED [rpm]××
Indicates the engine speed computed from
the signal of the crankshaft position sensor
(POS) and camshaft position sensor
(PHASE).Accuracy becomes poor if engine
speed drops below the idle rpm.
If the signal is interrupted while the
engine is running, an abnormal value
may be indicated.
MAS A/F SE-B1 [V]××
The signal voltage of the mass air flow sen-
sor is displayed.When the engine is stopped, a cer-
tain value is indicated.
B/FUEL SCHDL
[msec]×
Base fuel schedule indicates the fuel injec-
tion pulse width programmed into ECM,
prior to any learned on board correction.
A/F ALPHA-B1 [%]×
The mean value of the air-fuel ratio feed-
back correction factor per cycle is indi-
cated.When the engine is stopped, a cer-
tain value is indicated.
This data also includes the data for
the air-fuel ratio learning control. A/F ALPHA-B2 [%]×
COOLAN TEMP/S
[°C] or [°F]××
The engine coolant temperature (deter-
mined by the signal voltage of the engine
coolant temperature sensor) is displayed.
When the engine coolant tempera-
ture sensor is open or short-cir-
cuited, ECM enters fail-safe mode.
The engine coolant temperature
determined by the ECM is displayed.
HO2S1 (B1) [V]××
The signal voltage of the heated oxygen
sensor 1 is displayed.
HO2S1 (B2) [V]×
HO2S2 (B1) [V]×
The signal voltage of the heated oxygen
sensor 2 is displayed.
HO2S2 (B2) [V]×
HO2S1 MNTR (B1)
[RICH/LEAN]××
Display of heated oxygen sensor 1 signal
during air-fuel ratio feedback control:
RICH: means the mixture became “rich”,
and control is being affected toward a
leaner mixture.
LEAN: means the mixture became “lean”,
and control is being affected toward a rich
mixture.After turning ON the ignition switch,
“RICH” is displayed until air-fuel mix-
ture ratio feedback control begins.
When the air-fuel ratio feedback is
clamped, the value just before the
clamping is displayed continuously. HO2S1 MNTR (B2)
[RICH/LEAN]×
HO2S2 MNTR (B1)
[RICH/LEAN]×
Display of heated oxygen sensor 2 signal:
RICH: means the amount of oxygen after
three way catalyst is relatively small.
LEAN: means the amount of oxygen after
three way catalyst is relatively large.
When the engine is stopped, a cer-
tain value is indicated.
HO2S2 MNTR (B2)
[RICH/LEAN]×
VHCL SPEED SE
[km/h] or [mph]××
The vehicle speed computed from the vehi-
cle speed signal sent from combination
meter is displayed.
BATTERY VOLT
[V]××
The power supply voltage of ECM is dis-
played.
ACCEL SEN 1 [V]××
The accelerator pedal position sensor sig-
nal voltage is displayed.ACCEL SEN 2 signal is converted by
ECM internally. Thus, it differs from
ECM terminal voltage signal. ACCEL SEN 2 [V]×
THRTL SEN 1 [V]××
The throttle position sensor signal voltage
is displayed.THRTL SEN 2 signal is converted by
ECM internally. Thus, it differs from
ECM terminal voltage signal. THRTL SEN 2 [V]×
INT/A TEMP SE
[°C] or [°F]××
The intake air temperature (determined by
the signal voltage of the intake air tempera-
ture sensor) is indicated.
TROUBLE DIAGNOSIS
EC-429
[VQ]
C
D
E
F
G
H
I
J
K
L
MA
EC
START SIGNAL
[ON/OFF]××Indicates start signal status [ON/OFF] com-
puted by the ECM according to the signals
of engine speed and battery voltage.After starting the engine, [OFF] is
displayed regardless of the starter
signal.
CLSD THL POS
[ON/OFF]××
Indicates idle position [ON/OFF] computed
by ECM according to the accelerator pedal
position sensor signal.
AIR COND SIG
[ON/OFF]××
Indicates [ON/OFF] condition of the air
conditioner switch as determined by the air
conditioner signal.
P/N POSI SW
[ON/OFF]××
Indicates [ON/OFF] condition from the
park/neutral position (PNP) switch signal.
PW/ST SIGNAL
[ON/OFF]××
[ON/OFF] condition of the power steering
system (determined by the signal voltage
of the power steering pressure sensor sig-
nal) is indicated.
LOAD SIGNAL
[ON/OFF]××
Indicates [ON/OFF] condition from the
electrical load signal.
ON: Rear window defogger switch is ON
and/or lighting switch is in 2nd position.
OFF: Both rear window defogger switch
and lighting switch are OFF.
IGNITION SW
[ON/OFF]×
Indicates [ON/OFF] condition from ignition
switch signal.
HEATER FAN SW
[ON/OFF]×
Indicates [ON/OFF] condition from heater
fan switch signal.
BRAKE SW
[ON/OFF]×
Indicates [ON/OFF] condition from the stop
lamp switch signal.
INJ PULSE-B1
[msec]×
Indicates the actual fuel injection pulse
width compensated by ECM according to
the input signals.When the engine is stopped, a cer-
tain computed value is indicated.
INJ PULSE-B2
[msec]
IGN TIMING
[BTDC]×
Indicates the ignition timing computed by
ECM according to the input signals.When the engine is stopped, a cer-
tain value is indicated.
PURG VOL C/V
[%]
Indicates the EVAP canister purge volume
control solenoid valve control value com-
puted by the ECM according to the input
signals.
The opening becomes larger as the value
increases.
INT/V TIM (B1)
[°CA]
Indicates [°CA] of intake camshaft
advanced angle.
INT/V TIM (B2)
[°CA]
INT/V SOL (B1) [%]
The control condition of the intake valve
timing control solenoid valve (determined
by ECM according to the input signals) is
indicated.
The advance angle becomes larger as the
value increases. INT/V SOL (B2) [%]Monitored item
[Unit]ECM
INPUT
SIGNALSMAIN
SIGNALSDescription Remarks
TROUBLE DIAGNOSIS
EC-431
[VQ]
C
D
E
F
G
H
I
J
K
L
MA
EC
NOTE:
Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.SET VHCL SPD
[km/h] or [mph]
The preset vehicle speed is displayed.
MAIN SW
[ON/OFF]
Indicates [ON/OFF] condition from MAIN
switch signal.
CANCEL SW
[ON/OFF]
Indicates [ON/OFF] condition from CAN-
CEL switch signal.
RESUME/ACC SW
[ON/OFF]
Indicates [ON/OFF] condition from
RESUME/ACCELERATE switch signal.
SET SW
[ON/OFF]
Indicates [ON/OFF] condition from SET/
COAST switch signal.
BRAKE SW1
[ON/OFF]
Indicates [ON/OFF] condition from ASCD
brake switch signal.
BRAKE SW2
[ON/OFF]
Indicates [ON/OFF] condition of stop lamp
switch signal.
VHCL SPD CUT
[NON/CUT]
Indicates the vehicle cruise condition.
NON: Vehicle speed is maintained at the
ASCD set speed.
CUT: Vehicle speed increased to exces-
sively high compared with the ASCD set
speed, and ASCD operation is cut off.
LO SPEED CUT
[NON/CUT]
Indicates the vehicle cruise condition.
NON: Vehicle speed is maintained at the
ASCD set speed.
CUT: Vehicle speed decreased to exces-
sively low compared with the ASCD set
speed, and ASCD operation is cut off.
AT O D M O N I T O R
[ON/OFF]
Indicates [ON/OFF] condition of A/T O/D
according to the input signal from the TCM.
AT OD CANCEL
[ON/OFF]
Indicates [ON/OFF] condition of A/T O/D
cancel signal sent from the TCM.
CRUISE LAMP
[ON/OFF]
Indicates [ON/OFF] condition of CRUISE
lamp determined by the ECM according to
the input signals.
SET LAMP
[ON/OFF]
Indicates [ON/OFF] condition of SET lamp
determined by the ECM according to the
input signals.
Voltage [V]
Voltage, frequency, duty cycle or pulse
width measured by the probe.
Only # is displayed if item is unable
to be measured.
Figures with #s are temporary ones.
They are the same figures as an
actual piece of data which was just
previously measured. Frequency [msec],
[Hz] or [%]
DUTY-HI
DUTY-LOW
PLS WIDTH-HI
PLS WIDTH-LOWMonitored item
[Unit]ECM
INPUT
SIGNALSMAIN
SIGNALSDescription Remarks
EC-432
[VQ]
TROUBLE DIAGNOSIS
DATA MONITOR (SPEC) MODE
Monitored Item
NOTE:
Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.
ACTIVE TEST MODE
Test Item
Monitored item [Unit]ECM
INPUT
SIG-
NALSMAIN
SIG-
NALSDescription Remarks
ENG SPEED [rpm]××
Indicates the engine speed computed
from the signal of the crankshaft position
sensor (POS) and camshaft position
sensor (PHASE).
MAS A/F SE-B1 [V]××
The signal voltage of the mass air flow
sensor specification is displayed.When engine is running specification
range is indicated.
B/FUEL SCHDL
[msec]×
Base fuel schedule indicates the fuel
injection pulse width programmed into
ECM, prior to any learned on board cor-
rection.
When engine is running specification
range is indicated.
A/F ALPHA-B1 [%]
A/F ALPHA-B2 [%]×
The mean value of the air-fuel ratio feed-
back correction factor per cycle is indi-
cated.When engine is running specification
range is indicated.
This data also includes the data for the
air-fuel ratio learning control.
TEST ITEM CONDITION JUDGEMENT CHECK ITEM (REMEDY)
FUEL INJEC-
TION
Engine: Return to the original
trouble condition
Change the amount of fuel injec-
tion using CONSULT-II.If trouble symptom disappears, see
CHECK ITEM.
Harness and connectors
Fuel injector
Heated oxygen sensor 1
IGNITION TIM-
ING
Engine: Return to the original
trouble condition
Timing light: Set
Retard the ignition timing using
CONSULT-II.If trouble symptom disappears, see
CHECK ITEM.
Perform Idle Air Volume Learning.
POWER BAL-
ANCE
Engine: After warming up, idle
the engine.
A/C switch: OFF
Shift lever: P or N
Cut off each fuel injector signal
one at a time using CONSULT-II.Engine runs rough or dies.
Harness and connectors
Compression
Fuel injector
Power transistor
Spark plug
Ignition coil
COOLING FAN*
Ignition switch: ON
Turn the cooling fan “HI”, “MID”,
“LOW” and “OFF” using CON-
SULT-II.Cooling fan moves and stops.Harness and connectors
Cooling fan motor
IPDM E/R
ENG COOLANT
TEMP
Engine: Return to the original
trouble condition
Change the engine coolant tem-
perature using CONSULT-II.If trouble symptom disappears, see
CHECK ITEM.
Harness and connectors
Engine coolant temperature sen-
sor
Fuel injector
FUEL PUMP
RELAY
Ignition switch: ON (Engine
stopped)
Turn the fuel pump relay “ON”
and “OFF” using CONSULT-II
and listen to operating sound.Fuel pump relay makes the operat-
ing sound.Harness and connectors
Fuel pump relay