DI±250
± DIAGNOSTICSENGINE
444 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR STRATEGY
RltdDTCP0420Bank 1 catalyst is deterioratedRelated DTCsP0430Bank 2 catalyst is deteriorated
Main sensors/componentsFront and rear heated oxygen sensor
Required sensors/componentsRelated sensors/components
Mass air flow meter, Engine coolant temperature
sensor, Engine speed sensor, Intake air tempera-
ture sensor
Frequency of operationOnce per driving cycle
Duration20 sec.
MIL operation2 driving cycles
Sequence of operationNone
TYPICAL ENABLING CONDITIONS
ItSpecificationItemMinimumMaximum
The monitor will run whenever these
DTCs are not presentSee page DI±18
Battery voltage11 V±
Intake air temperature±10C (14F)±
Engine coolant temperature75°C (167°F)±
Atmospheric pressure coefficient0.75±
IdleOFF
Engine RPM±3,200 rpm
A/F sensorActivated
Fuel system statusClosed loop
Engine load10 to 70 %
All of the following conditions are metCondition 1, 2 and 3
1. MAF6 to 75 g/sec
2. Front catalyst temperature (estimated)620 to 830C (1,148 to 1,526F)
3. Rear catalyst temperature (estimated)410 to 830C (770 to 1,526F)
Rear HO2S monitorCompleted
Shift position4th±
TYPICAL MALFUNCTION THRESHOLDS
Detection CriteriaThreshold
Oxygen storage capacity (OSC) of catalystLess than 0.16
A23541
At least 3 minutes
2 seconds
Check
2 seconds
Engine Speed
3,000 rpm
2,000 rpm
Idling
Ignition Switch OFF(a)(b)(c) (d)
Time
Warming up(d)
± DIAGNOSTICSENGINE
DI±251
445 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR RESULT
Refer to page DI±26 for detailed information.
The test value and test limit information are described as shown in the following table. Check the monitor
result and test values after performing the monitor drive pattern (refer to ºConfirmation Monitorº).
MID (Monitor Identification Data) is assigned to each emissions±related component.
TID (Test Identification Data) is assigned to each test value.
Scaling is used to calculate the test value indicated on generic tools.
Catalyst bank 1 ± Active A/F control method
MIDTIDScalingDescription of Test ValueMinimum Test LimitMaximum Test Limit
$21$A9Multiply by 0.0003
(no dimension)Oxygen storage capacity of catalystMinimum test limit for catalystMaximum test limit for catalyst
Catalyst bank 2 ± Active A/F control method
MIDTIDScalingDescription of Test ValueMinimum Test LimitMaximum Test Limit
$22$A9Multiply by 0.0003
(no dimension)Oxygen storage capacity of catalystMinimum test limit for catalystMaximum test limit for catalyst
WAVEFORMS OF AIR±FUEL RATIO (A/F) AND HEATED OXYGEN (HO2) SEN-
SORS
HINT:
Perform the operation with the engine speeds and time durations described below prior to check the wave-
forms of the A/F and HO2 sensors. This is in order to activate the sensors sufficiently to obtain the appropri-
ate inspection results.
(a) Connect the hand±held tester to the DLC3.
(b) Start the engine and warm it up with all the accessories switched OFF, until the engine coolant temper-
ature stabilizes.
(c) Run the engine at an engine speed of between 2,500 rpm and 3,000 rpm for at least 3 minutes.
(d) After confirming that the waveform of the heated oxygen sensor (bank 1, 2 sensor 1 (HA1A, HA2A)),
oscillate around 0.5 V during feedback to the ECM, check the waveform of the heated oxygen sensor
(bank 1, 2 sensor 2 (OX1B, OX2B)).
DI±258
± DIAGNOSTICSENGINE
452 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR DESCRIPTION
The two monitors, Key±Off and Purge Flow, are used to detect malfunctions relating to DTC P0441. The
Key±Off monitor is initiated by the ECM internal timer, known as the soak timer, 5 hours* after the ignition
switch is turned to OFF. The purge flow monitor runs while the engine is running.
1. KEY±OFF MONITOR
5 hours* after the ignition switch is turned OFF, the electric vacuum pump creates negative pressure (vacu-
um) in the EVAP (Evaporative Emission) system. The ECM monitors for leaks and actuator malfunctions
based on the EVAP pressure.
HINT:
*: If the engine coolant temperature is not below 35C (95F) 5 hours after the ignition switch is turned off,
the monitor check starts 2 hours later. If it is still not below 35C (95F) 7 hours after the ignition switch is
turned off, the monitor check starts 2.5 hours later.
SequenceOperationsDescriptionsDuration
±ECM activationActivated by soak timer, 5 hours (7 or 9.5 hours) after ignition switch turned to OFF.±
AAtmospheric pressure
measurement
Vent valve turned OFF (vent) and EVAP system pressure measured by ECM in order to
register atmospheric pressure.
If EVAP pressure is not between 70 kPa and 110 kPa (525 mmHg and 825 mmHg), ECM
cancels EVAP system monitor.
10 seconds
B
First 0.02 inch leak
pressure measure-
mentIn order to determine 0.02 inch leak pressure standard, vacuum pump creates negative pres-
sure (vacuum) through 0.02 inch orifice and then ECM checks if vacuum pump and vent
valve operate normally.
60 seconds
CEVAP system pres-
sure measurement
Vent valve turned ON (closed) to shut EVAP system.
Negative pressure (vacuum) created in EVAP system, and EVAP system pressure then
measured.
Write down the measured value as it will be used in the leak check.
If EVAP pressure does not stabilize within 15 minutes, ECM cancels EVAP system monitor.
15 minutes*
DPurge VSV monitorPurge VSV opened and then EVAP system pressure measured by ECM.
Large increase indicates normal.10 seconds
E
Second 0.02 inch leak
pressure measure-
mentLeak check is performed after second 0.02 inch leak pressure standard is measured.
If stabilized system pressure higher than second 0.02 inch leak pressure standard, ECM
determines that EVAP system leaking.
60 seconds
FFinal checkAtmospheric pressure measured and then monitoring result recorded by ECM.±
* If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.
B17399
Fuel Tank Canister
Vacuum Pump: OFF Pressure Sensor 0.02 Inch Orifice
Pump Module
Operation A: Atmospheric Pressure Measurement
Vent Valve: OFF (vent)
Operation D: Purge VSV monitor Operation B: 0.02 Inch Leak Pressure Measurement
Negative
Pressure Atmospheric
Pressure
Operation C: EVAP Leak Check
Air Filter
Purge VSV: OFFOFF (vent)
ON
OFF
OFF
ON
ON (closed)ON
ON
ON (closed)
DI±274
± DIAGNOSTICSENGINE
468 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR DESCRIPTION
5 hours* after the ignition switch is turned OFF, the electric vacuum pump creates negative pressure (vacu-
um) in the EVAP (Evaporative Emission) system. The ECM monitors for leaks and actuator malfunctions
based on the EVAP pressure.
HINT:
*: If the engine coolant temperature is not below 35C (95F) 5 hours after the ignition switch is turned off,
the monitor check starts 2 hours later. If it is still not below 35C (95F) 7 hours after the ignition switch is
turned off, the monitor check starts 2.5 hours later.
SequenceOperationsDescriptionsDuration
±ECM activationActivated by soak timer, 5 hours (7 or 9.5 hours) after ignition switch turned to OFF.±
AAtmospheric pressure
measurement
Vent valve turned OFF (vent) and EVAP system pressure measured by ECM in order to
register atmospheric pressure.
If EVAP pressure is not between 70 kPa and 110 kPa (525 mmHg and 825 mmHg), ECM
cancels EVAP system monitor.
10 seconds
B
First 0.02 inch leak
pressure measure-
mentIn order to determine 0.02 inch leak pressure standard, vacuum pump creates negative pres-
sure (vacuum) through 0.02 inch orifice and them ECM checks if vacuum pump and vent
valve operate normally.
60 seconds
CEVAP system pres-
sure measurement
Vent valve turned ON (closed) to shut EVAP system.
Negative pressure (vacuum) created in EVAP system, and EVAP system pressure then
measured.
Write down the measured value as it will be used in the leak check.
If EVAP pressure does not stabilize within 15 minutes, ECM cancels EVAP system monitor.
15 minutes*
DPurge VSV monitorPurge VSV opened and then EVAP system pressure measured by ECM.
Large increase indicates normal.10 seconds
E
Second 0.02 inch leak
pressure measure-
mentLeak check is performed after second 0.02 inch leak pressure standard is measured.
If stabilized system pressure higher than second 0.02 inch leak pressure standard, ECM
determines that EVAP system leaking.
60 seconds
FFinal checkAtmospheric pressure measured and then monitoring result recorded by ECM.±
* If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.
A23556
8 J17
J/CECM Combination Meter
SPD
E5 G±O
B G±O 25
C5
B
± DIAGNOSTICSENGINE
DI±279
473 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR STRATEGY
Related DTCsP0500Vehicle speed sensor ºAº pulse input error
Main sensorsVehicle speed sensor
Required sensors/componentsRelated sensorsPark/Neutral position switch, Engine coolant tem-
perature sensor, Combination meter
Frequency of operationContinuous
Duration500 times
MIL operationImmediate
Sequence of operationNone
TYPICAL ENABLING CONDITIONS
ItSpecificationItemMinimumMaximum
The monitor will run whenever this DTC is
not presentSee page DI±18
Vehicle speed is 9 km/h (5.59 mph) or
more4 sec.±
Park/neutral position switchOFF
TYPICAL MALFUNCTION THRESHOLDS
Detection CriteriaThreshold
Sensor signalNo pulse input
WIRING DIAGRAM
± DIAGNOSTICSENGINE
DI±289
483 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR STRATEGY
Related DTCsP0505Idle air control malfunction
Main sensors/componentsCrankshaft position sensor
Required sensors/componentsRelated sensors/componentsVehicle speed sensor, Engine coolant tempera-
ture sensor
Frequency of operationOnce per driving cycle
Duration10 min.
MIL operation2 driving cycles
Sequence of operationNone
TYPICAL ENABLING CONDITIONS
ItSpecificationItemMinimumMaximum
The monitor will run whenever this DTC is
not presentSee page DI±18
EngineRunning
TYPICAL MALFUNCTION THRESHOLDS
Detection CriteriaThreshold
Either of the following conditions is met:Condition 1 or 2
1. Frequency that both of the following conditions (a) and (b)
are met:5 times or more
(a) Engine RPM ± target engine RPMLess than ±100 rpm or more than 150 rpm
(b) Vehicle conditionStop after vehicle was driven by 10 km/h (6.25 mph) or more
2. Frequency that both of the following conditions (a) and (b)
are met:Once
(a) Engine RPM ± target engine RPMLess than ±100 rpm or more than 150 rpm
(b) Intake air control flow rate learning value2.48 L/sec. or less, or 11 L/sec. or more
A23480
Fuel Tank Canister
Vacuum Pump: OFF Pressure Sensor 0.02 Inch Orifice
Pump Module
Operation A: Atmospheric Pressure Measurement
Vent Valve: OFF (vent)
Operation D: Purge VSV monitor Operation B: 0.02 Inch Leak Pressure Measurement
Negative
Pressure Atmospheric
Pressure
Operation C: EVAP Leak Check
Air Filter
Purge VSV: OFFOFF (vent)
ON
OFF
OFF
ON
ON (closed)ON
ON
ON (closed)
± DIAGNOSTICSENGINE
DI±411
605 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR DESCRIPTION
5 hours* after the ignition switch is turned OFF, the electric vacuum pump creates negative pressure (vacu-
um) in the EVAP (Evaporative Emission) system. The ECM monitors for leaks and actuator malfunctions
based on the EVAP pressure.
HINT:
*: If the engine coolant temperature is not below 35C (95F) 5 hours after the ignition switch is turned off,
the monitor check starts 2 hours later. If it is still not below 35C (95F) 7 hours after the ignition switch is
turned off, the monitor check starts 2.5 hours later.
SequenceOperationsDescriptionsDuration
±ECM activationActivated by soak timer, 5 hours (7 or 9.5 hours) after ignition switch turned to OFF.±
AAtmospheric pressure
measurement
Vent valve turned OFF (vent) and EVAP system pressure measured by ECM in order to
register atmospheric pressure.
If EVAP pressure is not between 70 kPa and 110 kPa (525 mmHg and 825 mmHg), ECM
cancels EVAP system monitor.
10 seconds
B
First 0.02 inch leak
pressure measure-
mentIn order to determine 0.02 inch leak pressure standard, vacuum pump creates negative pres-
sure (vacuum) through 0.02 inch orifice and them ECM checks if vacuum pump and vent
valve operate normally.
60 seconds
CEVAP system pres-
sure measurement
Vent valve turned ON (closed) to shut EVAP system.
Negative pressure (vacuum) created in EVAP system, and EVAP system pressure then
measured.
Write down the measured value as it will be used in the leak check.
If EVAP pressure does not stabilize within 15 minutes, ECM cancels EVAP system monitor.
15 minutes*
DPurge VSV monitorPurge VSV opened and then EVAP system pressure measured by ECM.
Large increase indicates normal.10 seconds
E
Second 0.02 inch leak
pressure measure-
mentLeak check is performed after second 0.02 inch leak pressure standard is measured.
If stabilized system pressure higher than second 0.02 inch leak pressure standard, ECM
determines that EVAP system leaking.
60 seconds
FFinal checkAtmospheric pressure measured and then monitoring result recorded by ECM.±
* If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.
A23480
Fuel Tank Canister
Vacuum Pump: OFF Pressure Sensor 0.02 Inch Orifice
Pump Module
Operation A: Atmospheric Pressure Measurement
Vent Valve: OFF (vent)
Operation D: Purge VSV monitor Operation B: 0.02 Inch Leak Pressure Measurement
Negative
Pressure Atmospheric
Pressure
Operation C: EVAP Leak Check
Air Filter
Purge VSV: OFFOFF (vent)
ON
OFF
OFF
ON
ON (closed)ON
ON
ON (closed)
± DIAGNOSTICSENGINE
DI±417
611 Author: Date:
2005 SEQUOIA (RM1146U)
MONITOR DESCRIPTION
5 hours* after the ignition switch is turned OFF, the electric vacuum pump creates negative pressure (vacu-
um) in the EVAP (Evaporative Emission) system. The ECM monitors for leaks and actuator malfunctions
based on the EVAP pressure.
HINT:
*: If the engine coolant temperature is not below 35C (95F) 5 hours after the ignition switch is turned off,
the monitor check starts 2 hours later. If it is still not below 35C (95F) 7 hours after the ignition switch is
turned off, the monitor check starts 2.5 hours later.
SequenceOperationsDescriptionsDuration
±ECM activationActivated by soak timer, 5 hours (7 or 9.5 hours) after ignition switch turned to OFF.±
AAtmospheric pressure
measurement
Vent valve turned OFF (vent) and EVAP system pressure measured by ECM in order to
register atmospheric pressure.
If EVAP pressure is not between 70 kPa and 110 kPa (525 mmHg and 825 mmHg), ECM
cancels EVAP system monitor.
10 seconds
B
First 0.02 inch leak
pressure measure-
mentIn order to determine 0.02 inch leak pressure standard, vacuum pump creates negative pres-
sure (vacuum) through 0.02 inch orifice and them ECM checks if vacuum pump and vent
valve operate normally.
60 seconds
CEVAP system pres-
sure measurement
Vent valve turned ON (closed) to shut EVAP system.
Negative pressure (vacuum) created in EVAP system, and EVAP system pressure then
measured.
Write down the measured value as it will be used in the leak check.
If EVAP pressure does not stabilize within 15 minutes, ECM cancels EVAP system monitor.
15 minutes*
DPurge VSV monitorPurge VSV opened and then EVAP system pressure measured by ECM.
Large increase indicates normal.10 seconds
E
Second 0.02 inch leak
pressure measure-
mentLeak check is performed after second 0.02 inch leak pressure standard is measured.
If stabilized system pressure higher than second 0.02 inch leak pressure standard, ECM
determines that EVAP system leaking.
60 seconds
FFinal checkAtmospheric pressure measured and then monitoring result recorded by ECM.±
* If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.