2001 PRIUS (EWD414U)
M
BRAKE SEAT BELT
(
Driver' s Seat)5
68 7
23 PRIUS (
Cont' d)
HI GH BEAM
TURN R
TURN L
SRS
ABS
MA LFUNCTI ON
I NDI CATOR LAMP
SEAT BEL T
(
Front
Pass enger' s Seat)
WATER TEMP.
(
Hi gh)
WATER TEMP.
(
Low)
CRUI SE
OUTPUT CONTROL
CHARGE
OI L
B 5 19A 18A 17A
4B 10A 16A
Combination M eter
See Tur n Signal
Light Sy stem< 5±4>See Headlight System
< 3±3> <4±4>
Se e SRS Syst em
< 21±3>
See Engine Cont rol
Sy st em< 2± 4> See ABS System
< 19±4> See SRS Sy st em
< 21±3>
C10 C11,
COMBI NATI ON METE RAB
THS (TOYOTA HYBRID SYSTEM)
182TH24
ªREADYº LightOutput Control
Warning Light 26
DRIVING CHARACTERISTICS
Because the Prius uses a parallel series hybrid system, some aspects of its operation may differ from those of
existing automobiles, and may require precautions that are unique to this system.
1. Starting the THS
Make sure that the parking brake is engaged and that the shift lever is in the P position.
While depressing the brake pedal, turn the ignition switch to the START position. After this, the ªREADYº
light flashes.
The engine does not start when the shift lever is in the N position; it can only start in the P position. When
the external air temperature is low, the ªREADYº light may flash longer than usual.
As soon as the engine has started, the ªREADYº light illuminates steadily and a beeping sound is heard.
Several seconds after the engine warms up, the engine stops automatically, provided that the air conditioning
compressor does not need to operate and that the HV battery maintains a proper SOC (state of charge).
2. Start-Off
While keeping the brake pedal depressed, release
the parking brake, and move the shift lever to the
D position.
The vehicle has the same creeping movement as
the conventional automatic transmission vehicles.
Gradually release the brake pedal and slowly de-
press the accelerator pedal to start off.
At this time, the vehicle starts off powered only by
the MG2 (Motor Generator No.2)
NOTICE: The vehicle can be started off, provided that the ªREADYº light remains illuminated, even
if the engine remains stopped.
3. Acceleration
Depress the accelerator pedal to accelerate the vehicle.
If the engine remained stopped during start-off, the engine will start automatically during acceleration.
4. Downhill Driving
Move the shift lever to the B position as necessary in order to simultaneously apply the regenerative brake
and the engine friction brake.
5. Deceleration and Stopping
Depress the brake pedal to decelerate and to stop the vehicle.
Depressing the brake pedal causes the regenerative brake to activate automatically in the D or B position. (In
the regenerative brake system, kinetic energy is converted to electrical energy.) If the engine has warmed up,
the air conditioning compressor does not need to operate, and if the HV battery maintains a proper SOC (state
of charge), the engine stops automatically when the vehicle speed drops-even if the vehicle comes to a stop.
6. Parking
Push down the parking brake pedal, move the shift lever to the P position, and pull out the ignition key.
NOTICE: Make sure to pull out the ignition key after parking the vehicle because the vehicle can be
driven as long as the ªREADYº light remains illuminated even if the engine is stopped.
7. Other Characteristics and Precautions
If a drive wheel slips on slippery terrain, causing the front wheels to spin faster than the rear wheels, the
THS effects control to limit the slippage by restraining the drive force. (This also protects the planetary
gear from damage.)
When the HV battery temperature is too high or low, the output control warning light illuminates, alerting
the driver that output power may be limited.
This is not 2 malfunction. This condition may be corrected by avoiding sudden acceleration /decelaration,
after which the light will go out.
When the vehicle is stopped and the shift lever is in the N position, electricity is not generated even if the
engine is running. If the vehicle remains stopped for a long time, make sure to move the shift lever to the
P position. In heavy traffic, keep the shift lever in the D position.
THS (TOYOTA HYBRID SYSTEM)27
THS CONTROL SYSTEM
1. General
The THS control system contains the following components:
HV (Hybrid Vehicle
Control) ECU
Controls the MG1, 2 and the engine according to the demand torque,
regenerative brake control and the SOC (state of charge) of HV battery. These
factors are determined by the shift position, the degree which the accelerator
is depressed, and vehicle speed.
ECM
ControlThe HV ECU receives engine status data (rpm, torque) from the ECM and
determines the engine demand torque.
Moreover, engine stop and fuel cut signals are sent according to the driving
conditions.
In addition, the vehicle speed signal received from the combination meter is
also sent.
BRAKE
ECU
ControlThe HV ECU receives data corresponding to the total braking force needed.
The HV ECU transmits the regeneration brake demand torque valve, as well
as the regeneration brake execution torque valve.
Inverter
(for MG1,
MG2)
ControlThe HV ECU sends the signal to the power transistor in the inverter for
switching the U, V, W, phase of the MG1, 2 in order to drive the MG1 and 2.
Moreover, if an overheating, overcurrent or fault voltage signal is received
from the inverter, it is shut down.
ConverterWhen a malfunction is in the Hybrid vehicle control system, the HV ECU
sends a signal to the converter, and the converter is stopped.
MG1, MG2Detects the position of the rotor of the MG1, 2 and controls the current flowing
to the MG1, 2.
In addition, the temperature is detected and the maximum load is controlled.
Battery ECUReceives the SOC of the HV battery and the current value.
Airbag Sensor
AssemblyReceives the airbag deployment signal.
A / C ECUReceives the engine power rise demand (when air-conditioning is turned ON)
and the engine running demand for water-temperature maintenance.
Accelerator Pedal
Position SensorReceives the value corresponding to degree at which the accelerator pedal is
depressed.
Shift Position SensorReceives the shift position signal (P, R, N, D, B).
Cruise Control SwitchReceives the cruise control switch signal.
Stop Light SwitchReceives the brake signal.
Interlock Switch
(for Inverter Cover and
Service Plug)Verifies that the cover of both the inverter and the service plug have been
installed.
Circuit Breaker SensorThe high-voltage circuit is intercepted if a vehicle collision has been detected.
DiagnosisWhen the HV ECU detects a malfunction, the HV ECU diagnosis and
memorizes the values corresponding to the failure.
Fail-SafeWhen the HV ECU detects a malfunction, the HV ECU stops or controls the
actuators and ECUs according to the data already stored in memory.
THS (TOYOTA HYBRID SYSTEM)
182TH33
31
± REFERENCE ±
The MG1 and the MG2 are generally shut down when the shift lever is in the N position.
However, the shut-down function is canceled under the following exceptions:
During driving, if the brake pedal is depressed and a wheel locks up, the ABS is activated. After this, low
torque is requested from the MG2 to provide supplemental power in order to restart the rotation of the wheel.
Even if the shift lever is in the N position at this time, the shut-down function is canceled to allow the wheel
to rotate. After the wheel rotation has been restarted, the system resumes its shut-down function.
When the vehicle is driven in the D or B position and the brake pedal is depressed, the regenerative brake
operates. At this time, as the driver moves the shift lever to the N position, the brake hydraulic pressure in-
creases while the request torque of the regenerative brake decreases gradually so as not to create a sluggish
brake feel. After this, the system effects its shut-down function.
When any of the conditions described below is pres-
ent, the message prompt as shown appears in the
multi information display, accompanied by the illu-
mination of the master warning light and the continu-
ous sounding of the buzzer.
The ªREADYº light is illuminated, the shift lever
is in the N position, and the HV battery is dis-
charged.
The ªREADYº light is illuminated, the shift lever
is in the N position, and the driver's door is open.
The ªREADYº light is illuminated, the parking brake is engaged, the shift lever is in the B or D position, and
the driver's door is open.
THS (TOYOTA HYBRID SYSTEM)
182CH05
Stator
Rotor
Speed Sensor (Resolver)
MG1
182CH04
Stator
Rotor
Speed Sensor (Resolver)
MG2
182TH07
N.m
350
300
250
200
150
100
50
0
01000 30002000 50004000 60000 20 40
30
10 kW
Torque
Engine Speed (rpm)Output
Torque
Output
33
MG1 AND MG2 (MOTOR GENERATOR NO.1 AND NO.2)
DESCRIPTION
Both the MG1 and the MG2 are compact, lightweight, and highly efficient alternating current permanent
magnet synchronous type.
Serving as the source of supplemental motive force that provides power assistance to the engine as needed,
the electric motor helps the vehicle achieve excellent dynamic performance, including smooth start-offs
and acceleration. When the regenerative brake is activated, MG2 converts the vehicle's kinetic energy into
electrical energy, which is then stored in the HV battery.
MG1 recharges the HV battery and supplies electrical power to drive MG2. In addition, by regulating the
amount of electrical power generated (thus varying the generator's rpm), MG1 effectively controls the
continuously variable transmission function of the transaxle. MG1 also serves as the starter to start the
engine.
MG2 Specifications
TypePermanent Magnet
Motor (1CM)
Rated voltage [V]273.6
Maximum output [kW] (rpm)33 / (1040 5600)
Maximum torque [N.m (kgf.m) (rpm)350 / (0 400)
Amperage at maximum torque [A]351
Cooling systemWater-cooled
Performance Curve
THS (TOYOTA HYBRID SYSTEM)
182TH12
SOCExample of change in SOC
Upper SOC control limit
Control regionTarget SOC
control
Lower SOC control limit
Time
Overcharged region
Overcharged region
39
1. Battery ECU
The battery ECU provides the following functions.
SOC (state of charge) Control
While the vehicle is in motion, the HV battery
undergoes repetitive charging / discharging
cycles, as it becomes discharged by the MG2
during acceleration and charged by the regenera-
tive brake during deceleration. The battery ECU
outputs charge / discharge requests to the HV
ECU so that the SOC can be constantly main-
tained at a center level, by estimating the charg-
ing / discharging amperage.
Cooling Fan Control
To ensure the HV battery's performance considering the heat that is generated in the HV battery during
charging and discharging, the battery ECU controls the operation of the cooling fan.
HV Battery Malfunction Monitoring
This function includes the monitoring of the temperature and the voltage of the battery via the battery ECU.
If a malfunction is detected, the battery ECU protects the HV battery by restricting or stopping the charging
and discharging of the HV battery. In addition, this function illuminates the warning light, outputs DTCs
(Diagnostic Trouble Codes), and stores them in memory. For further details on the DTCs, refer to the 2001
Prius Repair Manual (Pub No. RM778U).
CHASSIS ± P111 HYBRID TRANSAXLE
182CH78
Shift Control
Switch
Shift Lock Override LeverShift Lock Solenoid
Shift Lock ECUKey Interlock
Solenoid89
SHIFT LOCK SYSTEM
1. General
A shift lock system that help prevent the unintended operation of the shift lever has been provided.
The shift lock system consists of a key interlock device and shift lock mechanism.
2. Layout of Components
3. Function of Components
ComponentsFunction
P Position Detection
SwitchDetects whether or not the shift lever is in P position and sends signals to the
shift lock ECU.
Key Interlock SolenoidRegulates the movement of the ignition key cylinder.
Shift Lock SolenoidRegulates the operation of the shift lever at P position.
Stop Light SwitchSends the brake signal to the shift lock ECU.
Shift Lock ECUReceives inputs of various types of signals and regulates the operation of the
two solenoids.
CHASSIS ± BRAKES
182CH39
182CH40
101
Specifications
Master CylinderTypeSingleMaster CylinderDiameter mm (in.)22.22 (0.87)
Brake Booster TypeHydraulic
TypeVentilated Disc
Front BrakeCaliper TypePE54Front BrakeWheel Cylinder Dia. mm (in.)54.0 (2.13)
Rotor Size (D x T)* mm (in.)255 x 22 (10.04 x 0.87)
TypeLeading-Trailing Drum
Rear BrakeWheel Cylinder Dia. mm (in.)20.64 (0.81)
Drum Inner Dia. mm (in.)200 (7.87)
Brake Control Valve TypeP & B Valve
TypeDrum
Parking BrakeSize mm (in.)200 (7.87)g
Lever TypePedal
ABS with EBDSTD
*: D: Outer Diameter, T: Thickness
FRONT BRAKE
The PE54 type brake calipers and ventilated disc
rotor have been adopted. These brake calipers are
lightweight and compact to realize excellent brake
performance.
REAR BRAKE
General
The leading-trailing type drum brakes using
drums with a 200 mm (7.87 in.) inner diameter
have been adopted.
A hydraulic system that adjusts the clearance
between the shoes and the drum has been
adopted.