TM-204
< REMOVAL AND INSTALLATION >[CVT: RE0F10D]
CVT OIL WARMER SYSTEM
4. Remove CVT oil warmer bolts, then
remove CVT oil warmer from vehicle.
INSTALLATION
Installation is in the reverse order of removal.
CVT OIL WARMER : InspectionINFOID:0000000009464153
INSPECTION AFTER INSTALLATION
• Check for CVT fluid leakage and check CVT fluid level. Refer to TM-178, "Inspection".
• Start and warm up the engine. Visually check that there is no leakage of engine coolant and CVT fluid.
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
TRANSAXLE ASSEMBLYTM-207
< UNIT REMOVAL AND INSTALLATION > [CVT: RE0F10D]
C
EF
G H
I
J
K L
M A
B
TM
N
O P
2. Disconnect the transaxle harness connectors.
3. Disconnect the CVT oil warmer water hoses from engine side. Refer to TM-199, "WATER HOSE :
Removal and Installation".
4. Remove the transaxle to engine and engine to transaxle bolts.
5. Remove the CVT fluid charging pipe.
6. Separate the engine from the transaxle assembly. Refer to EM-84, "Removal and Installation"
.
NOTE:
Using paint, put matching marks on the drive plate and torque converter when removing the torque con-
verter to drive plate nuts.
7. Remove transmission bracket.
INSTALLATION
Installation is in the reverse order of removal.
NOTE:
Write down the serial number of the new transaxle assembly.
CAUTION:
• When replacing an engine or tr ansaxle you must make sure any dowels are installed correctly during
re-assembly.
• Improper alignment caused by missing dowels m ay cause vibration, oil leaks or breakage of driv-
etrain components.
• Do not reuse O-rings or copper sealing washers.
• When turning crankshaft, turn it clockwise as viewed from the front of the engine.
• When tightening the nuts for the torque converter while securing the crankshaft pulley bolt, be sure
to confirm the tightening torque of the crankshaft pulley bolt. Refer to EM-62, "Removal and Installa-
tion".
• After converter is installed to drive plate, rota te crankshaft several turns to check that CVT rotates
freely without binding.
• When installing the CVT to the engine, align the ma tching mark on the drive plate with the matching
mark on the torque converter.
When installing the CVT to the engine, attach the bolts in accor-
dance with the following standard.
• (A) : Transaxle assembly to engine assembly.
• (B) : Engine assembly to transaxle assembly.
Bolt No.123456
Number of
bolts 132212
JSDIA4208GB
ALDIA0040ZZ
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
TM-226
< SYSTEM DESCRIPTION >[CVT: RE0F10E]
STRUCTURE AND OPERATION
TRANSAXLE : Operation Status
INFOID:0000000009464198
× : Engaged or applied.
TRANSAXLE : Trans axle MechanismINFOID:0000000009464199
TORQUE CONVERTER (WITH LOCK-UP FUNCTION)
In the same way as a conventional A/T, the torque c onverter is a system that increases the engine torque and
transmits the torque to the transaxle. A symmetr ical 3-element, 1-stage, 2-phase type is used here.
OIL PUMP
Utilizes a vane-type oil pump that is driven by the engi ne through the oil pump drive chain in order to increase
efficiency of pump discharge volume in low-speed zone and optimize pump discharge volume in high-speed
zone. Discharged oil from oil pump is transmitted to contro l valve. It is used as the oil of primary and second-
ary pulley operation, the oil of clutch operation, and the lubricant for each part.
PLANETARY GEAR
• A planetary gear type of forward/reverse selector me chanism is installed between the torque converter and
primary pulley.
• The power from the torque converter is input via the i nput shaft, operating a wet multi-plate clutch by means
of hydraulic pressure to switch between forward and reverse driving.
Operation of Planetary gear
BELT & PULLEY
It is composed of a pair of pulleys (the groove width is changed freely in the axial direction) and the chain belt
.The groove width changes according to wrapping radius of chain belt and pulley from low status to overdrive
status continuously with non-step. It is controlled wit h the oil pressures of primary pulley and secondary pulley.
Chain belt
Selector lever
position Parking mech-
anism Forward
clutch Reverse brake Primary pulley Secondary
pulley Chain belt Final drive
P ×
R ×××××
N
D × ××××
DS × ××××
JSDIA2426GB
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
STRUCTURE AND OPERATIONTM-227
< SYSTEM DESCRIPTION > [CVT: RE0F10E]
C
EF
G H
I
J
K L
M A
B
TM
N
O P
The chain belt consists of approximately 150 locker pins and
1,000 link plates . Chains are rotated by locker pins sandwiched by
pulleys. This produces tension difference in chains among pulleys.
Accordingly, the power is transferred by the tension.
Pulley
The primary pulley (input shaft side) and the secondary pulley (output shaft side) have the shaft with slope
(fixed cone surface), movable sheave (movable cone surface that can move in the axial direction) and oil pres-
sure chamber at the back of the movable sheave.
The movable sheave slides on the shaft to change the gr oove width of the pulley. Input signals of engine load
(accelerator pedal opening), primary pulley speed and secondary pulley speed change the operation pres-
sures of the primary pulley and the secondary pulley, and controls the pulley groove width.
FINAL DRIVE AND DIFFERENTIAL
JSDIA3643ZZ
JSDIA2429GB
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
STRUCTURE AND OPERATIONTM-229
< SYSTEM DESCRIPTION > [CVT: RE0F10E]
C
EF
G H
I
J
K L
M A
B
TM
N
O P
TRANSAXLE : Component DescriptionINFOID:0000000009464201
FLUID COOLER & FLUID WARMER SYSTEM
Part name Function
Torque converter Increases engine torque and transmits it to the transaxle.
Oil pump Utilizes a vane-type oil pump that is driven by the engine through the oil pump drive chain in order to
increase efficiency of pump discharge volume in low-speed zone and optimize pump discharge volume
in high-speed zone. Discharged oil from oil pump is tr ansmitted to control valve. It is used as the oil of
primary and secondary pulley operation, the oil of clutch operation, and the lubricant for each part.
Forward clutch The forward clutch is wet and multiple plate type clutch that consists of clutch drum, piston, drive plate,
and driven plate. It is a clutch to move the vehicle forward by activating piston hydraulically, engaging
plates, and directly connecting sun gear and input shaft.
Reverse brake The reverse brake is a wet multiple-plate type brake that consists of transaxle case, piston, drive plate,
and driven plate. It is a brake to move the vehicle in reverse by activating piston hydraulically, engaging
plates, and fixing planetary gear.
Internal gear The internal gear is directly connected to forward clutch drum. It is a gear that moves the outer edge of
pinion planet of planet carrier. It transmits power to move the vehicle in reverse when the planet carrier
is fixed.
Planet carrier Composed of a carrier, pinion planet, and pinion shaft. This gear fixes and releases the planet carrier in
order to switch between forward and reverse driving.
Sun gear Sun gear is a set part with planet carrier and internal gear. It transmits transmitted force to primary fixed
sheave. It rotates in forward or reverse direction according to activation of either forward clutch or re-
verse brake.
Input shaft The input shaft is directly connected to forward clutch drum and transmits traction force from torque con-
verter. In shaft center, there are holes for hydraulic distribution to primary pulley and hydraulic distribution
for lockup ON/OFF.
Primary pulley It is composed of a pair of pulleys (the groove width is changed freely in the axial direction) and the chain belt. The groove width changes according to wrapping radius of steel belt and pulley from low status to
overdrive status continuously with non-step. It is controlled with the oil pressures of primary pulley and
secondary pulley.
Secondary pulley
Chain belt
Manual shaft When the manual shaft is in the P position, the parking rod that is linked to the manual shaft rotates the
parking pole. When the parking pole rotates, it engages with the parking gear, fixing the parking gear. As
a result, the secondary pulley that is integrated with the parking gear is fixed.
Parking rod
Parking pawl
Parking gear
Output gear
The deceleration gears are composed of 2 stages: primary deceleration (output gear, idler gear pair) and
secondary deceleration (reduction gear, final gear pair). All of these gears are helical gears.
Idler gear
Reduction gear
Differential
Torque converter regulator
valve Adjusts the feed pressure to the torque converter to the optimum pressure corresponding to the driving
condition.
Pressure regulator valve Adjusts the discharge pressure from the oil pump to the optimum pressure (line pressure) corresponding
to the driving condition.
Torque converter clutch
control valve Adjusts the torque converter engage and disengage pressures.
Manual valve Distributes the clutch operation pressure to each circuit according to the selector lever position.
Secondary reducing valve Reduces line pressure and adjusts secondary pressure.
Primary reducing valve Reduces line pressure and adjusts primary pressure.
Pilot valve A Reduces line pressure and adjusts pilot pressure to the solenoid valves listed below.
• Primary pressure solenoid valve
• Secondary pressure solenoid valve
• Select solenoid valve
• Line pressure solenoid valve
Pilot valve B Reduces pilot pressure and adjusts pilot pressure to the torque converter clutch solenoid valve.
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
TM-230
< SYSTEM DESCRIPTION >[CVT: RE0F10E]
STRUCTURE AND OPERATION
FLUID COOLER & FLUID WARMER SYSTEM : System Description
INFOID:0000000009464202
CVT FLUID COOLER SCHEMATIC
COMPONENT DESCRIPTION
CVT Oil Warmer
• The CVT oil warmer (1) is installed on the front part of transaxle
assembly.
• When engine is started while engine and CVT are cold, engine coolant temperature rises more quickly than CVT fluid tempera-
ture. CVT oil warmer is provided with two circuits for CVT and
engine coolant respectively so that warmed engine coolant warms
CVT quickly. This helps shorten CVT warming up time, improving
fuel economy.
• A cooling effect is obtained when CVT fluid temperature is high.
Heater Thermostat
• The heater thermostat (1) is insta lled on the front part of transaxle
assembly.
• The heater thermostat open and close with set temperature.
SHIFT LOCK SYSTEM
SHIFT LOCK SYSTEM : System DescriptionINFOID:0000000009464203
The shift lever cannot be shifted from the “P” positi on unless the brake pedal is depressed while the ignition
switch is set to ON. The shift lock is unlocked by turn ing the shift lock solenoid ON when the ignition switch is
set to ON, the park position switch is turned ON (selec tor lever is in “P” position), and the stop lamp switch is
turned ON (brake pedal is depressed) as shown in the oper ation chart in the figure. Therefore, the shift lock
solenoid receives no ON signal and the shift lock remains locked if all of the above conditions are not fulfilled.
However, selector operation is allowed if the shift lock release button is pressed.
JSDIA3787GB
JSDIA2280ZZ
JSDIA2585ZZ
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
TM-236
< SYSTEM DESCRIPTION >[CVT: RE0F10E]
SYSTEM
CVT CONTROL SYSTEM : Protection Control
INFOID:0000000009464206
The TCM becomes the protection control status temporar ily to protect the safety when the safety of TCM and
transmission is lost. It automatically returns to the normal status if the safety is secured.
The TCM has the following protection control.
CONTROL FOR WHEEL SPIN
TORQUE IS REDUCED WHEN DRIVING WITH THE REVERSE GEAR
CONTROL WHEN FLUID TEMPERATURE IS HIGH
P2813 • Selector shock is large
•Start is slow
• Acceleration is slow
• Vehicle speed is not increased When a malfunction occurs on the low oil pressure side
• Selector shock is large When a malfunction occurs on the high oil pressure side
P2814 • Selector shock is large —
P2815 • Selector shock is large —
U0073 • Selector shock is large
•Start is slow
• Acceleration is slow
• Lock-up is not performed —
U0100 • Selector shock is large
•Start is slow
• Acceleration is slow
• Lock-up is not performed —
U0140 • Not changed from normal driving —
U0141 • Not changed from normal driving —
U0155 • Not changed from normal driving —
U0300 • Selector shock is large
•Start is slow
• Acceleration is slow
• Lock-up is not performed —
U1000 • Not changed from normal driving — U1117 • Not changed from normal driving — DTC Vehicle behavior Conditions of vehicle
Control
When a wheel spin is detected, the engine output and gear ratio are limited and the line pressure is increased.
Limits engine output when a wheel spin occurs in any of right and left drive wheels.
Vehicle behavior in
control If the accelerator is kept depressing during wheel spin, the engine revolution and vehicle speed are limited to
a certain degree.
Normal retu rn condi-
tion Wheel spin convergence returns the control to the normal control.
Control Engine output is controlled according to a vehicle speed while reversing the vehicle.
Vehicle behavior in
control Power performance may be lowered while reversing the vehicle.
Normal retu rn condi-
tion Torque returns to normal by positioning the selector lever in a range other than “R” position.
Control
When the CVT fluid temperature is high, the gear shift permission maximum revolution and the maximum
torque are reduced than usual to prevent increase of the oil temperature.
Vehicle behavior in
control Power performance may be lowered, compared to normal control.
Normal retu rn condi-
tion The control returns to the normal control when CVT fluid temperature is lowered.
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM
SYSTEMTM-237
< SYSTEM DESCRIPTION > [CVT: RE0F10E]
C
EF
G H
I
J
K L
M A
B
TM
N
O P
REVERSE PROHIBIT CONTROL
LINE PRESSURE CONTROL
LINE PRESSURE CONTROL : System DescriptionINFOID:0000000009464207
SYSTEM DIAGRAM
DESCRIPTION
Highly accurate line pressure control (secondary pressure control) reduces friction for improvement of fuel
economy.
Normal Oil Pressure Control
Appropriate line pressure and secondary pressure suitable for driving condition are determined based on the
accelerator pedal position, engine speed, primary pulley (input) speed, secondary pulley (output) speed, vehi-
cle speed, input torque, stop lamp switch signal, transmission range switch signal, lock-up signal, power volt-
age, target shift ratio, oil temperature, oil pressure, and paddle shift (up/down) signal.
Secondary Pressure Feedback Control
In normal oil pressure control and oil pressure control in shifting, highly accurate secondary pressure is deter-
mined by detecting the secondary pressure using an oil pressure sensor and by feedback control.
SHIFT CONTROL
Control The reverse brake is controlled to avoid becoming engaged when the selector lever is set in “R” position while
driving in forward direction at more than the specified speed.
Vehicle behavior in
control If the selector lever is put at “R” position when driving with the forward gear, the gear becomes neutral, not
reverse.
Normal return condi-
tion The control returns to normal control when the vehicle is driven at low speeds. (The reverse brake becomes
engaged.)
JSDIA3716GB
Revision: November 20132014 Altima NAMRevision: November 20132014 Altima NAM