EC-22
[QR]
ENGINE CONTROL SYSTEM
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses
heated oxygen sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The
ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about
heated oxygen sensor 1, refer to EC-143
. This maintains the mixture ratio within the range of stoichiometric
(ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching
characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal
from heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of heated oxygen sensor 1 or its circuit
Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen
sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to
the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as orig-
inally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic
changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared
to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an
increase in fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
PBIB2953E
ENGINE CONTROL SYSTEM
EC-23
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The four fuel injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.
Electronic Ignition (EI) SystemBBS005BG
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
Firing order: 1-3-4-2
The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the
engine. The ignition timing data is stored in the ECM.
The ECM receives information such as the injection pulse width and camshaft position sensor signal. Comput-
ing this information, ignition signals are transmitted to the power transistor.
During the following conditions, the ignition timing is revised by the ECM according to the other data stored in
the ECM.
At starting
During warm-up
At idle
At low battery voltage
During acceleration
SEF337W
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
2
Piston position
Ignition timing
controlPower transistor Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
2
Wheel sensor
Vehicle speed*1
EC-24
[QR]
ENGINE CONTROL SYSTEM
The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed
within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not
operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition.
The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.
Fuel Cut Control (At No Load and High Engine Speed)BBS005BH
INPUT/OUTPUT SIGNAL CHART
*: This signal is sent to the ECM through CAN communication line.
SYSTEM DESCRIPTION
If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine
speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies
based on engine speed.
Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.
NOTE:
This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, EC-21
.
Sensor Input Signal to ECM ECM function Actuator
Park/neutral position (PNP) switch Neutral position
Fuel cut control Fuel injector Accelerator pedal position sensor Accelerator pedal position
Engine coolant temperature sensor Engine coolant temperature
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed
Wheel sensor Vehicle speed*
AIR CONDITIONING CUT CONTROL
EC-25
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
AIR CONDITIONING CUT CONTROLPFP:23710
Input/Output Signal ChartBBS005BI
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signal of engine speed and battery voltage.
SYSTEM DESCRIPTION
This system improves engine operation when the air conditioner is used.
Under the following conditions, the air conditioner is turned OFF.
When the accelerator pedal is fully depressed.
When cranking the engine.
At high engine speeds.
When the engine coolant temperature becomes excessively high.
When operating power steering during low engine speed or low vehicle speed.
When engine speed is excessively low.
When refrigerant pressure is excessively low or high.
Sensor Input Signal to ECM ECM function Actuator
Air conditioner switch Air conditioner ON signal
Air conditioner
cut controlAir conditioner relay Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
2
Engine coolant temperature sensor Engine coolant temperature
Refrigerant pressure sensor Refrigerant pressure
Power steering pressure sensor Power steering operation
Wheel sensor
Vehicle speed*
1
Battery
Battery voltage*2
EVAPORATIVE EMISSION SYSTEM
EC-27
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
EVAPORATIVE EMISSION SYSTEMPFP:14950
DescriptionBBS005BK
SYSTEM DESCRIPTION
The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel
system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.
The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the
vapor is stored there when the engine is not operating or when refueling to the fuel tank.
The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the
engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the
engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is
proportionally regulated as the air flow increases.
EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and
idling.
PBIB0491E
EC-30
[QR]
POSITIVE CRANKCASE VENTILATION
POSITIVE CRANKCASE VENTILATIONPFP:11810
DescriptionBBS005BM
SYSTEM DESCRIPTION
This system returns blow-by gas to the intake manifold.
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake
manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the
PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of venti-
lating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air
passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold
vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection
in the reverse direction.
On vehicles with an excessively high blow-by, the valve does not
meet the requirement. This is because some of the flow will go
through the hose connection to the air inlet tubes under all condi-
tions.
Component InspectionBBS005BN
PCV (POSITIVE CRANKCASE VENTILATION) VALVE
With engine running at idle, remove PCV valve from rocker cover. A
properly working valve makes a hissing noise as air passes through
it. A strong vacuum should be felt immediately when a finger is
placed over valve inlet.
PBIB0492E
PBIB1588E
PBIB1589E
ON BOARD DIAGNOSTIC (OBD) SYSTEM
EC-33
[QR]
C
D
E
F
G
H
I
J
K
L
MA
EC
ON BOARD DIAGNOSTIC (OBD) SYSTEMPFP:00028
IntroductionBBS005BP
The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actua-
tors. The ECM also records various emission-related diagnostic information including:
The above information can be checked using procedures listed in the table below.
×: Applicable —: Not applicable
*: When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.
The malfunction indicator (MI) on the instrument panel lights up when the same malfunction is detected in two
consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-59
.)
Two Trip Detection LogicBBS005BQ
When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the
ECM memory. The MI will not light up at this stage. <1st trip>
If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in
the ECM memory, and the MI lights up. The MI lights up at the same time when the DTC is stored. <2nd trip>
The “trip” in the “Two Trip Detection Logic” means a driving mode in which self-diagnosis is performed during
vehicle operation. When the ECM enters fail-safe mode (Refer to EC-59
.), the DTC is stored in the ECM
memory even in the 1st trip.
When there is an open circuit on MI circuit, the ECM can not warn the driver by lighting up MI when there is
trouble on engine control system. Therefore, when Electrical controlled throttle and part of the ECM related
diagnoses are continuously detected as NG for 5-trips, ECM warns the driver that engine control system has
trouble and MI circuit is open by means of operating fail-safe function.
The fail-safe function also operates when above diagnoses except MI circuit are detected and demands the
driver to repair the trouble.
Emission-related Diagnostic InformationBBS005BR
EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS
×:Applicable —: Not applicable Emission-related diagnostic information
Diagnostic Trouble Code (DTC)
Freeze Frame data
1st Trip Diagnostic Trouble Code (1st Trip DTC)
1st Trip Freeze Frame data
DTC 1st trip DTC Freeze Frame data1st trip Freeze Frame
data
CONSULT-II×× × ×
ECM××*— —
Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut
Items
(CONSULT-II screen terms)DTC*1
Trip MIReference
page
CONSULT-II
ECM*2
CAN COMM CIRCUIT U1000
1000*32—EC-113
CAN COMM CIRCUIT U1001
1001*32—EC-113
NO DTC IS DETECTED.
FURTHER TESTING
MAY BE REQUIRED.P0000 0000—
Flashing*4EC-37
INT/V TIM CONT-B1 P0011 0011 2 —EC-116
MAF SEN/CIRCUIT P0102 0102 1×EC-124
MAF SEN/CIRCUIT P0103 0103 1×EC-124
ECT SEN/CIRC P0117 0117 2×EC-131
ECT SEN/CIRC P0118 0118 2×EC-131
TP SEN 2/CIRC P0122 0122 1×EC-136
EC-34
[QR]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
*1: 1st trip DTC No. is the same as DTC No.
*2: In Diagnostic Test Mode II (Self-diagnostic results).
*3: The troubleshooting for this DTC needs CONSULT-II.
*4: When engine is running.
DTC AND 1ST TRIP DTC
The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic
result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip
DTC will not be displayed.
If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MI will not
light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required
driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the
2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MI lights up. In other words,
the DTC is stored in the ECM memory and the MI lights up when the same malfunction occurs in two consec-
utive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd
TP SEN 2/CIRC P0123 0123 1×EC-136
HO2S1 (B1) P0132 0132 2×EC-143
HO2S1 (B1) P0134 0134 2×EC-150
TP SEN 1/CIRC P0222 0222 1×EC-157
TP SEN 1/CIRC P0223 0223 1×EC-157
KNOCK SEN/CIRC-B1 P0327 0327 2 —EC-164
KNOCK SEN/CIRC-B1 P0328 0328 2 —EC-164
CKP SEN/CIRCUIT P0335 0335 2×EC-169
CMP SEN/CIRC-B1 P0340 0340 2×EC-176
VEH SPEED SEN/CIRC P0500 0500 2×EC-183
PW ST P SEN/CIRC P0550 0550 2 —EC-185
ECM P0605 0605 1 or 2× or —EC-190
ECM BACK UP/CIRCUIT P1065 1065 2×EC-193
ETC ACTR P1121 1121 1×EC-197
ETC FUNCTION/CIRC P1122 1122 1×EC-200
ETC MOT PWR P1124 1124 1×EC-207
ETC MOT PWR P1126 1126 1×EC-207
ETC MOT P1128 1128 1×EC-213
ENG OVER TEMP P1217 1217 1×EC-218
CTP LEARNING P1225 1225 2 —EC-229
CTP LEARNING P1226 1226 2 —EC-231
SENSOR POWER/CIRC P1229 1229 1×EC-233
NATS MALFUNCTION P1610 - P1615 1610 - 1615 2 —EC-32
P-N POS SW/CIRCUIT P1706 1706 2×EC-238
V/SP SEN (A/T OUT) P1720 1720 2 —EC-243
BRAKE SW/CIRCUIT P1805 1805 1×EC-245
APP SEN 1/CIRC P2122 2122 1×EC-251
APP SEN 1/CIRC P2123 2123 1×EC-251
APP SEN 2/CIRC P2127 2127 1×EC-258
APP SEN 2/CIRC P2128 2128 1×EC-258
TP SENSOR P2135 2135 1×EC-265
APP SENSOR P2138 2138 1×EC-272
Items
(CONSULT-II screen terms)DTC*1
Trip MIReference
page
CONSULT-II
ECM*2