+25 %
±12.5 %
More than 3.35 V
Less than 3.0 V
1
A/F Sensor (Sensor 1)
Output Voltage
Injection volume
Output voltage
HO2 Sensor (Sensor 2)
Output VoltageMain Suspected
Trouble Areas
OK
+25 %
±12.5 %
More than 3.35 V
Less than 3.0V
Injection volume
Output voltage
+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
A/F sensor+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG OK
OK
OK
Almost
no reaction
'
Almost
no reaction Almost
no reaction
Almost
no reaction
Case
2
3
4
A/F sensor circuit A/F sensor heater
HO2 sensor
HO2 sensor circuit HO2 sensor heater
(Air±fuel ratio extremely
lean or rich)Injector
Gas leakage from
exhaust system Fuel pressure
± DIAGNOSTICSENGINE
DI±169
363 Author: Date:
2005 SEQUOIA (RM1146U)
Standard:
Tester Display
(Sensor)Injection VolumesStatusVoltages
AFS B1S1 (AFS B2S1)
(A/F)+25 %RichLess than 3.0
AFS B1S1 (AFS B2S1)
(A/F)±12.5 %LeanMore than 3.35
O2S B1S2 (O2S B2S2)
(HO2)+25 %RichMore than 0.55
O2S B1S2 (O2S B2S2)
(HO2)±12.5 %LeanLess than 0.4
NOTICE:
The Air±Fuel Ratio (A/F) sensor has an output delay of a few seconds and the Heated Oxygen (HO2)
sensor has a maximum output delay of approximately 20 seconds.
Following the A/F CONTROL procedure enables technicians to check and graph the voltage outputs
of both the A/F and HO2 sensors.
To display the graph, select the following menu items on the tester: DIAGNOSIS / ENHANCED OBD
II / ACTIVE TEST / A/F CONTROL / USER DATA / AFS B1S1 and O2S B1S2, and press the YES but-
ton and then the ENTER button followed by the F4 button.
B17396
HT +B
AF± AF+ Sensor 1A/F Sensor Component Side:
Front View
DI±174
± DIAGNOSTICSENGINE
368 Author: Date:
2005 SEQUOIA (RM1146U)
9 Check for spark and ignition (See page IG±1).
HINT:
If the spark plugs or ignition system malfunction, engine misfire may occur. The misfire counter can be read
with the hand±held tester. Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / MIS-
FIRE / CYL#1 (to CYL#8).
NG Repair or replace ignition system.
OK
10 Check injector injection (See page SF±29).
HINT:
If the injectors malfunction, engine misfires may occur. The misfire counter can be read with the hand±held
tester. Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / MISFIRE / CYL#1 (to
CYL#8).
NG Replace injector.
OK
11 Check resistance of air±fuel ratio (A/F) sensor heater.
PREPARATION:
Disconnect the air±fuel ratio (A/F) sensor connector.
CHECK:
Measure resistance between the terminals of the A/F sensor
connector.
OK:
Standard:
Tester ConnectionSpecified Condition
HT (1) ± +B (2)1.8 to 3.4 W at 20C (68F)
HT (1) ± AF± (4)10 kW or higher
NG Replace air±fuel ratio (A/F) sensor.
OK
A23512
Reference (Bank 1 Sensor 1 System Drawing):
A/F Sensor A/F Relay
Heater
Sensor
A1A+ HA1A
Duty
Control ECM
From
Battery
A/F Heater
Fuse
A1A±
To EFI Relay
DI±176
± DIAGNOSTICSENGINE
370 Author: Date:
2005 SEQUOIA (RM1146U)
Standard (Check for short):
Tester ConnectionsSpecified Conditions
HT (A38±1) or HA1A (E7±2) ± Body ground
HT (A39±1) or HA2A (E7±1) ± Body ground10 kW or higher
AF+ (A38±3) or A1A+ (E7±22) ± Body ground
AF+ (A39±3) or A2A+ (E7±23) ± Body ground10 kW or higher
AF± (A38±4) or A1A± (E7±30) ± Body ground
AF± (A39±4) or A2A± (E7±31) ± Body ground10 kW or higher
NG Replace or replace harness or connector.
OK
14 Replace air fuel ratio sensor.
NEXT
+25 %
±12.5 %
More than 3.35 V
Less than 3.0 V
1
A/F Sensor (Sensor 1)
Output Voltage
Injection volume
Output voltage
HO2 Sensor (Sensor 2)
Output VoltageMain Suspected
Trouble Areas
OK
+25 %
±12.5 %
More than 3.35 V
Less than 3.0V
Injection volume
Output voltage
+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
A/F sensor+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG OK
OK
OK
Almost
no reaction
'
Almost
no reaction Almost
no reaction
Almost
no reaction
Case
2
3
4
A/F sensor circuit A/F sensor heater
HO2 sensor
HO2 sensor circuit HO2 sensor heater
(Air±fuel ratio extremely
lean or rich)Injector
Gas leakage from
exhaust system Fuel pressure
± DIAGNOSTICSENGINE
DI±253
447 Author: Date:
2005 SEQUOIA (RM1146U)
Standard:
Tester Display
(Sensor)Injection VolumesStatusVoltages
AFS B1S1
(A/F)+25 %RichLess than 3.0
AFS B1S1
(A/F)±12.5 %LeanMore than 3.35
O2S B1S2
(HO2)+25 %RichMore than 0.55
O2S B1S2
(HO2)±12.5 %LeanLess than 0.4
NOTICE:
The Air±Fuel Ratio (A/F) sensor has an output delay of a few seconds and the Heated Oxygen (HO2)
sensor has a maximum output delay of approximately 20 seconds.
Following the A/F CONTROL procedure enables technicians to check and graph the voltage outputs
of both the A/F and HO2 sensors.
To display the graph, select the following menu items on the tester: DIAGNOSIS / ENHANCED OBD
II / ACTIVE TEST / A/F CONTROL / USER DATA / AFS B1S1 and O2S B1S2, and press the YES but-
ton and then the ENTER button followed by the F4 button.
+25 %
±12.5 %
More than 3.35 V
Less than 3.0 V
1
A/F Sensor (Sensor 1)
Output Voltage
Injection volume
Output voltage
HO2 Sensor (Sensor 2)
Output VoltageMain Suspected
Trouble Areas
OK
+25 %
±12.5 %
More than 3.35 V
Less than 3.0V
Injection volume
Output voltage
+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
A/F sensor+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG OK
OK
OK
Almost
no reaction
'
Almost
no reaction Almost
no reaction
Almost
no reaction
Case
2
3
4
A/F sensor circuit A/F sensor heater
HO2 sensor
HO2 sensor circuit HO2 sensor heater
(Air±fuel ratio extremely
lean or rich)Injector
Gas leakage from
exhaust system Fuel pressure
± DIAGNOSTICSENGINE
DI±253
447 Author: Date:
2005 SEQUOIA (RM1146U)
Standard:
Tester Display
(Sensor)Injection VolumesStatusVoltages
AFS B1S1
(A/F)+25 %RichLess than 3.0
AFS B1S1
(A/F)±12.5 %LeanMore than 3.35
O2S B1S2
(HO2)+25 %RichMore than 0.55
O2S B1S2
(HO2)±12.5 %LeanLess than 0.4
NOTICE:
The Air±Fuel Ratio (A/F) sensor has an output delay of a few seconds and the Heated Oxygen (HO2)
sensor has a maximum output delay of approximately 20 seconds.
Following the A/F CONTROL procedure enables technicians to check and graph the voltage outputs
of both the A/F and HO2 sensors.
To display the graph, select the following menu items on the tester: DIAGNOSIS / ENHANCED OBD
II / ACTIVE TEST / A/F CONTROL / USER DATA / AFS B1S1 and O2S B1S2, and press the YES but-
ton and then the ENTER button followed by the F4 button.
A23473A±A Cross SectionAtmospheric AirSolid Electrolyte
(Zirconia Element)
Platinum
Electrode Heater
Exhaust Gas
Cover Element
A
A
ECM Monitored
A/F Sensor Voltage
Air±Fuel Ratio Alumina
4.0
3.0
2.0
12 13 14 15 16 17
DI±384
± DIAGNOSTICSENGINE
578 Author: Date:
2005 SEQUOIA (RM1146U)
CIRCUIT DESCRIPTION
The A/F sensor generates a voltage* that corresponds to the actual air±fuel ratio. This sensor voltage is used
to provide the ECM with feedback so that it can control the air±fuel ratio. The ECM determines the deviation
from the stoichiometric air±fuel ratio level, and regulates the fuel injection time. If the A/F sensor malfunc-
tions, the ECM is unable to control the air±fuel ratio accurately.
The A/F sensor is the planar type and is integrated with the heater, which heats the solid electrolyte (zirconia
element). This heater is controlled by the ECM. When the intake air volume is low (the exhaust gas tempera-
ture is low), a current flows into the heater to heat the sensor, in order to facilitate accurate air±fuel ratio
detection. In addition, the sensor and heater portions are narrower than the conventional type. The heat
generated by the heater is conducted to the solid electrolyte though the alumina, therefore the sensor activa-
tion is accelerated.
In order to obtain a high purification rate of the carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide
(NOx) components in the exhaust gas, a TWC is used. For the most efficient use of the TWC, the air±fuel
ratio must be precisely controlled so that it is always close to the stoichiometric level.
*: Value changes inside the ECM. Since the A/F sensor is the current output element, a current is converted
to a voltage inside the ECM. Any measurements taken at the A/F sensor or ECM connectors will show a
constant voltage.
± DIAGNOSTICSENGINE
DI±385
579 Author: Date:
2005 SEQUOIA (RM1146U)DTC No.
DTC Detection ConditionsTrouble Areas
P2195
P2197While fuel±cut operation performing (during vehicle decelera-
tion), air±fuel ratio sensor current is 3.6 mA or more for 3 se-
conds.A/F sensor (sensor 1)
ECM
P2195
Conditions (a) and (b) continue for 2 seconds or more
(2 trip detection logic):
(a) Air±Fuel Ratio (A/F) sensor voltage more than 3.8 V
(b) Heated Oxygen (HO2) sensor voltage 0.15 V or more
Open or short in A/F sensor (sensor 1) circuit
A/F sensor (sensor 1)
A/F sensor (sensor 1) heater
EFI relay
A/F sensor heater and relay circuits
Air induction system
Fuel pressure
Injector
ECM
P2196
P2198While fuel±cut operation performing (during vehicle decelera-
tion), air±fuel ratio sensor current is less than 1.4 mA for 3
seconds.A/F sensor (sensor 1)
ECM
P2196
Conditions (a) and (b) continue for 2 seconds or more
(2 trip detection logic):
(a) A/F sensor voltage less than 2.8 V
(b) HO2 sensor voltage less than 0.85 V
Open or short in A/F sensor (sensor 1) circuit
A/F sensor (sensor 1)
A/F sensor (sensor 1) heater
EFI relay
A/F sensor heater and relay circuits
Air induction system
Fuel pressure
Injector
ECM
HINT:
When any of these DTCs are set, check the A/F sensor voltage output by selecting the following menu
items on a hand-held tester: DIAGNOSIS / ENHANCED OBD II / DATA LIST / ALL / AFS B1S1.
Short-term fuel trim values can also be read using a hand-held tester.
The ECM regulates the voltage at the A1A+ and A1A± terminals of the ECM at a constant level. There-
fore, the A/F sensor voltage output cannot be confirmed without using a hand±held tester.
If the A/F sensor functional malfunction is detected, the ECM sets this DTC.
+25 %
±12.5 %
More than 3.35 V
Less than 3.0 V
1
A/F Sensor (Sensor 1)
Output Voltage
Injection volume
Output voltage
HO2 Sensor (Sensor 2)
Output VoltageMain Suspected
Trouble Areas
OK
+25 %
±12.5 %
More than 3.35 V
Less than 3.0V
Injection volume
Output voltage
+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
A/F sensor+25 %
±12.5 %
More than 0.55 V
Less than 0.4V
Injection volume
Output voltage
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG
+25 %
±12.5 %
Injection volume
Output voltage
NG OK
OK
OK
Almost
no reaction
'
Almost
no reaction Almost
no reaction
Almost
no reaction
Case
2
3
4
A/F sensor circuit A/F sensor heater
HO2 sensor
HO2 sensor circuit HO2 sensor heater
(Air±fuel ratio extremely
lean or rich)Injector
Gas leakage from
exhaust system Fuel pressure
DI±392
± DIAGNOSTICSENGINE
586 Author: Date:
2005 SEQUOIA (RM1146U)
NOTICE:
The Air±Fuel Ratio (A/F) sensor has an output delay of a few seconds and the Heated Oxygen (HO2)
sensor has a maximum output delay of approximately 20 seconds.
Following the A/F CONTROL procedure enables technicians to check and graph the voltage outputs
of both the A/F and HO2 sensors.
To display the graph, select the following menu items on the tester: DIAGNOSIS / ENHANCED OBD
II / ACTIVE TEST / A/F CONTROL / USER DATA / AFS B1S1 and O2S B1S2, and press the YES but-
ton and then the ENTER button followed by the F4 button.
HINT:
Read freeze frame data using a hand±held tester. Freeze frame data record the engine condition when
malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle
was moving or stationary, if the engine was warmed up or not, if the air±fuel ratio was lean or rich, and
other data, from the time the malfunction occurred.
A low A/F sensor voltage could be caused by a rich air±fuel mixture. Check for conditions that would
cause the engine to run rich.
A high A/F sensor voltage could be caused by a lean air±fuel mixture. Check for conditions that would
cause the engine to run lean.