CAMRY
CAMRY ± OUTLINE OF NEW FEATURES 26
OUTLINE OF NEW FEATURES
The CAMRY is a high-quality family sedan with advanced technology and sporty performance. The following
changes are made for the 2000 model year.
1. Model Line-Up
The 5S-FNE CNG (Compressed Natural Gas) engine model has been added.
2. Exterior
Four new exterior colors have been added, for a total of 10 colors.
The design of the front and rear bumpers has been changed.
The bumper and the radiator grille have been made separate, and the radiator grille is chrome-plated.
The side protection molding has been increased in size. On the XLE grade model, chrome stripes have been
adopted for the side protection molding.
The 4-light multi-reflector type headlights are adopted with new styling.
The design and styling of the rear combination light has been changed.
The 16º aluminum alloy wheel and wheel cap has been added.
The styling of the 15º full wheel cover has been changed.
3. Interior
Wood-grain panels have been adopted in the interior of the XLE grade model.
CRS tether anchor brackets have been provided on the package tray trim. (except 5S-FNE engine Model)
A clock with an outside temperature gauge has been provided on the models with manual air conditioning.
4. 5S-FE Engine
The intake system from the inlet duct to the throttle body has been improved to increase torque and reduce
noise.
The direction of the rotation of the radiator cooling fan has been reversed.
A 2-way exhaust control system has been adopted on the TMMK made model.
Along with the discontinuance of the air assist system, the fuel injectors and the IAC valve have been
changed for the California specification model, in order to meet ULEV (Ultra-Low Emission Vehicle) re-
quirement.
The system for detecting evaporative emission leaks has been changed. For details, see the General 2000
Features section.
5. 5S-FNE Engine
Based on the 5S-FE gasoline engine, the 5S-FNE engine uses compressed natural gas. The fuel lines have
been designed exclusively for compressed natural gas application.
6. 1MZ-FE Engine
The system for detecting evaporative emission leaks has been changed. For details, see the General 2000
Features section.
A diagnostic trouble code (DTC) has been added for indicating a thermostat malfunction.
7. Automatic Transaxle
The overdrive switch has been changed to the momentary type. For details, see the General 2000 Features
section.
The differential gear ratio of the A140E automatic transaxle has been changed for the 5S-FNE engine mod-
el to accommodate the performance of the 5S-FNE engine.
CAMRY ± NEW FEATURES
172CM06
172CM07
Inlet Duct
Air
Air Cleaner CaseEjection Pipe
New
Air
Hybrid Resonator
PreviousTorque-up Resonator 34
2. Major Difference
The following changes have made to the 5S-FE engine.
Item
Details
Intake and Exhaust
System
The intake system from the inlet duct to the throttle body has been
improved to increase torque and reduce noise.
A 2-way exhaust control system has been adopted on the TMMK made
model.
Fuel SystemAlong with the discontinuance of the air assist system, the fuel injectors and
the IAC valve have been changed for the California specification model.
Cooling SystemThe direction of the rotation of the electric cooling fan has been reversed.
Engine Control
System
The fast idle speed has been increased for the California specification
model.
The system for detecting evaporative emission leaks has been changed.
For details, see the General 2000 Features section.
3. Intake and Exhaust System
Intake Air Line
An ejection pipe that protrudes into the air cleaner case has been added. Accordingly, the hybrid resonator
has been discontinued and a torque-up resonator has been added. Also, the shape of the inlet duct has been
changed to improve the engine performance and to reduce noise.
Intake System Diagram
IDLE SPEED INSPECTION
1. INITIAL CONDITIONS
(a) Engine at normal operating temperature
(b) Air cleaner installed
(c) All pipes and hoses of air induction system connected
(d) All vacuum lines properly connected
(e) MFI/SFI system wiring connectors fully plugged
(f) All operating accessories switched OFF
(g) Ignition timing set correctly
(h) Transmission in neutral position
2. CONNECT TACHOMETER
Connect the test probe of a tachometer to terminal IG
(±) of the data link connector 1.
NOTICE:
wNever allow the tachometer terminal to touch
ground as it could result in damage to the Igniter
and/or ignition coil.
wAs some tachometers are not compatible with this
ignition system, we recommend that you confirm
the compatibility of yours before use.
(b) Check the idle speed.
Idle speed (w/ Cooling fan OFF):
750+50 rpm
If the idle speed is not as specified, check the IAC
system.
4. DISCONNECT TACHOMETER 3. INSPECT IDLE SPEED
(a) Race the engine at 2,500 rpm for approx. 90 seconds.
± 5S±FE ENGINEENGINE MECHANICALEG1±20
3. INSPECT AND ADJUST THROTTLE OPENER
A. Warm up engine
Allow the engine to warm up to normal operating
temperature.
B. Check idle speed
Idle speed:
750 +50 rpm
C. Check and adjust throttle opener setting speed
(a) Disconnect the vacuum hose from the throttle opener,
and plug the hose end.
(b) Maintain the engine at 2,500 rpm.
(c) Release the throttle valve.
(d) Check that the throttle opener is set.
Throttle opener setting speed:
1,300 ± 1,500 rpm (w/ Cooling fan OFF) (d) Using an ohmmeter, measure the resistance between
each terminal.
(e) Reconnect the sensor connector.
Clearance between
lever and stop screw
Throttle valve fully
open0.50 mm (0.020 in.)
0.70 mm (0.028 in.)Between
terminals
2.0 ± 10.2 k 2.3 k or less 0.2 ± 5.7 k
0 mm (0 in.)
2.5 ± 5.9 k Resistance
VTA ± E2
IDL ± E2
VTA ± E2IDL ± E2
VC ± E2Infinity
± 5S±FE ENGINEMFI/SFI SYSTEMEG1±205
The cooling system is composed of the water jacket (inside the cylinder block and cylinder head),
radiator, water pump, thermostat, electric fan, hoses and other components.
Engine coolant which is heated in the water jacket is pumped to the radiator, through which an
electric fan blows air to cool the coolant as it passes through. Engine coolant which has been
cooled is then sent back to the engine by the water pump, where it cools the engine.
The water jacket is a network of channels in the shell of the cylinder block and cylinder head
through which coolant passes. It is designed to provide adequate cooling of the cylinders and
combustion chambers which become heated during engine operation.
DESCRIPTION
This engine utilizes a pressurized forced circulation cooling system which includes a thermostat
equipped with a bypass valve mounted on the inlet side.
OPERATIONCOOLING SYSTEM
± 5S±FE ENGINECOOLING SYSTEMEG1±238
RADIATOR
The radiator performs the function of cooling the coolant which has passed through the water
jacket and become hot, and it is mounted in the front of the vehicle. The radiator consists of an
upper tank and lower tank, and a core which connects the two tanks. The upper tank contains the
inlet for coolant from the water jacket and the filler inlet. It also has a hose attached through
which excess coolant or steam can flow. The lower tank has an outlet and drain cock for the
coolant. The core contains many tubes through which coolant flows from the upper tank to the
lower tank as well as to cooling fins which radiate heat away from the coolant in the tubes. The
air sucked through the radiator by the electric fan, as well as the wind generated by the vehicle's
travel, passes through the radiator, cooling the coolant. Models with automatic transmission
include an automatic transmission fluid cooler built into the lower tank of the radiator. A fan with
an electric motor is mounted behind the radiator to assist the flow of air through the radiator. The
fan operates when the engine coolant temperature becomes high in order to prevent it from be-
coming too high.
RADIATOR CAP
The radiator cap is a pressure type cap which seals the radiator, resulting in pressurization of the
radiator as the coolant expands. The pressurization prevents the coolant from boiling even when
the engine coolant temperature exceeds 100°C (212°F). A relief valve (pressurization valve) and a
vacuum valve (negative pressure valve) are built into the radiator cap. The relief valve opens and
lets steam escape through the overflow pipe when the pressure generated inside the cooling sys-
tem exceeds the limit (coolant temperature: 110±120°C (230±248°F), pressure; 58.8103.0 kpa
(0.6±1.05 kgf/cm
2, 8.5±14.9 psi). The vacuum valve opens to alleviate the vacuum which develops
in the cooling system after the engine is stopped and the engine coolant temperature drops. The
valve's opening allows the coolant in the reservoir tank to return to the cooling system.
RESERVOIR TANK
The reservoir tank is used to catch coolant which overflows from the cooling system as a result
of volumetric expansion when the coolant is heated. The coolant in the reservoir tank returns to
the radiator when the coolant temperature drops, thus keeping the radiator full at all times and
avoiding needless coolant loss.
Check the reservoir tank level to learn if the coolant needs to be replenished.
WATER PUMP
The water pump is used for forced circulation of coolant through the cooling system. It is
mounted on the front of the cylinder block and driven by a timing belt.
THERMOSTAT
The thermostat has a wax type bypass valve and is mounted in the water inlet housing. The
thermostat includes a type of automatic valve operated by fluctuations in the engine coolant
temperature. This valve closes when the engine coolant temperature drops, preventing the
circulation of coolant through the engine and thus permitting the engine to warm up rapidly. The
valve opens when the engine coolant temperature has risen, allowing the circulation of coolant.
Wax inside the thermostat expands when heated and contracts when cooled. Heating the wax
thus generates pressure which overpowers the force of the spring which keeps the valve closed,
thus opening the valve. When the wax cools, its contraction allows the force of the spring to take
effect once more, closing the valve. The thermostat in this engine operates at a temperature of
82C (180F).
± 5S±FE ENGINECOOLING SYSTEMEG1±239
PREPARATION
SST (SPECIAL SERVICE TOOLS)
RECOMMENDED TOOLS
09082±00050 TOYOTA Electrical Tester Set09230±01010 Radiator Service Tool Set
6.3 liters (6.7 US qts, 5.5 Imp. qts)Engine coolant temperature switch
Engine coolant temperature switch 09228±06500 Oil Filter Wrench
Engine coolant (w/ Heater)
EQUIPMENT
Radiator cap tester
Ethylene±glycol base
COOLANT
Torque wrenchThermometer
Classification Capacity Heater
Item
± 5S±FE ENGINECOOLING SYSTEMEG1±240
2. CHECK ENGINE COOLANT QUALITY
There should not be any excessive deposits of rust or
scales around the radiator cap or radiator filler hole,
and the engine coolant should be free from oil.
If excessively dirty, replace the engine coolant.
3. REPLACE ENGINE COOLANT
(a) Remove the radiator cap.
CAUTION: To avoid the danger of being burned, do not
remove It while the engine and radiator are still hot, as
fluid and steam can be blown out under pressure.
(b) Drain the engine coolant from the radiator drain cock
and engine drain plug. (Engine drain plug at the right
rear of cylinder block.)
(c) Close the drain cock and plug.
Torque (Engine drain plug):
13 N±m (130 kgf±cm, 9 ft±lbf)
(d) Slowly fill the system with coolant.
Use a good brand of ethylene±glycol base
coolant and mix it according to the
manufacturer 's directions.
Using engine coolant which includes more than
5096 ethylene±glycol (but not more than 7096) is
recommended.
NOTICE:
wDo not use a alcohol type coolant.
wThe engine coolant should be mixed with demineral±
ized water or distilled water.
Capacity (w/ Heater):
8.3 liters (6.7 US qts, 5.5 Imp.qts)
(a) Reinstall the radiator cap.
(f) Warm up the engine and check for leaks.
(g) Recheck the engine coolant level and refill as neces±
sary.
COOLANT CHECK AND
REPLACEMENT
1. CHECK ENGINE COOLANT LEVEL AT RESERVOIR
TANK
The engine coolant level should be between the
ºLOWº and ªFULLº lines.
If low, check for leaks and add engine coolant up to
the ªFULLº line.
± 5S±FE ENGINECOOLING SYSTEMEG1±241