GENERAL INFORMATION 0B -- 13
D AEW OO M Y_2000
OWNER INSPECTIONS AND SERVICES
WHILE OPERATING THE VEHICLE
Horn Operation
Blow the horn occasionally to make sure it works. Check
all the button locations.
Brake System Operation
Be alert for abnormal sounds, increased brake pedal
travel or repeated puling to one side when braking. Also,
if the brake warning light goes on, or flashes, something
may be wrong with part of the brake system.
Exhaust System Operation
Be alert to any changes inthe sound of the system or
the smell of the fumes. These are signs that the system
may be leaking or overheating. Have the system in-
spected and repaired immediately.
Tires, Wheels and Alignment Operation
Be alert to any vibration of the steering wheel or the
seats at normal highway speeds. This may mean a
wheel needs to be balanced. Also, a pull right or left on a
straight, level road may show the need for a tire pres-
sure adjustment or a wheel alignment.
Steering System Operation
Be alert to changes in the steering action. An inspection
is needed when the steering wheel is hard to turn or has
too much free play, or is unusual sounds are noticed
when turning or parking.
Headlight Aim
Take note of the light pattern occasionally. Adjust the
headlights if the beams seem improperly aimed.
AT EACH FUEL FILL
A fluid loss in any (except windshield washer) system
may indicate a problem. Have the system inspected and
repaired immediately.
Engine Oil Level
Check the oil level and add oil if necessary. The best
time to check the engine oil level is when the oil is warm.
1. After stopping the engine, wait a few minutes for the
oil to drain back to the oil pan.
2. Pull out the oil level indicator (dip stick).
3. Wipe it clean, and push the oil level indicator back
down all the way.
4. Pull out the oil level indicator and look at the oil level
on it.
5. Add oil, if needed, to keep the oil level above the low-
er mark. Avoid overfilling theengine, since this may
cause engine damage.
6. Push the indicator all the way back down into the en-
gine after taking the reading.If you check the oil level when the oil is cold, do not run
the engine first. The cold oil will not drain back to the pan
fast enough to give a true oil level reading.
Engine Coolant Level and Condition
Check the coolant level in the coolant reservoir tank and
add coolant if necessary. Inspect the coolant. Replace
dirty or rusty coolant.
Windshield Washer Fluid Level
Check the washer fluid level in the reservoir. Add fluid if
necessary.
AT LEAST TWICE A MONTH
Tire And Wheel Inspection and Pressure
Check
Check the tire for abnormal wear or damage. Also check
for damaged wheels. Check the tire pressure when the
tires are cold ( check the spare also, unless it is a stow-
away). Maintain the recommended pressures. Refer to
“Tire and Wheel” is in section 0B.
AT LEAST MONTHLY
Light Operation
Check the operation of the license plate light, the head-
lights (including the high beams), the parking lights, the
fog lights, the taillight, the brake lights, the turn signals,
the backup lights and the hazard warning flasher.
Fluid Leak Check
Periodically inspect the surface beneath the vehicle for
water, oil, fuel or other fluids, after the vehicle has been
parked for a while. Water dripping from the air condition-
ing system after use is normal. If you notice fuel leaks or
fumes, find the cause and correct it at once.
AT LEAST TWICE A YEAR
Power Steering System Reservoir Level
Check the power steering fluid level. Keep the power
steering fluid at the proper level. Refer to Section 6A,
Power Steering System.
Brake Master Cylinder Reservoir Level
Check the fluid and keep it at the proper level. A low fluid
level can indicate worn disc brake pads which may need
to be serviced. Check the breather hole in the reservoir
cover to be free from dirt and check for an open pas-
sage.
Weather- Strip Lubrication
Apply a thin film silicone grease using a clean cloth.
1F1 -- 14 M162 ENGINE CONTROLS
D AEW OO M Y_2000
DIAGNOSIS
FAILURE CODE DIAGNOSIS
CLEARING FAILURE CODES
Notice:To prevent Engine Control Module (ECM) damage, the key must be OFF when disconnecting or reconnecting
the power to the ECM (for example battery cable, ECM pigtail connector, ECM fuse, jumper cables, etc.)
Parameters listed in the table may not be exactly the same as your reading due to the type of instrument or other
factors. If a failure code is displayed during the “TROUBLE CODE” in scan tool check mode, check the circuit for the
code listed in the table below. For details of each code, turn to the page referred to under the “See Page” for the re-
spective “Failure Code” in the below table.
Failure codes should be cleared after repairs have been completed.
FAILURE CODES TABLE
Failure
codeSee
PageDescription
001F1 -- 66Engine coolant temperature sensor low voltage
011F1 -- 66Engine coolant temperature sensor high voltage
021F1 -- 66Engine coolant temperature sensor plausibility
031F1 -- 62Intake air temperature sensor low voltage
041F1 -- 62Intake air temperature sensor high voltage
051F1 -- 62Intake air temperature sensor plausibility
061F1 -- 66Engine coolant temperature insufficient for closed loop fuel control
081F1 -- 38System voltage too low
091F1 -- 62Mass air flow sensor plausibility
101F1 -- 62Mass air flow sensor low voltage
111F1 -- 62Mass air flow sensor high voltage
171F1 -- 23Crankshaft position sensor signal failure (no engine revolution signal)
181F1 -- 23Crankshaft position sensor signal failure (rpm > max. value)
191F1 -- 27Camshaft position senosr signal : No.1 cylinder recognition failure
201F1 -- 23Crankshaft position sensor signal failure (gap recognition failure)
211F1 -- 90Transmission coding failure
231F1 -- 88CAN communication failure : ASR/MSR
241F1 -- 88CAN communication failure : ABS
251F1 -- 94Communication with transponder missing
261F1 -- 88CAN communication failure : TCU (A/T only)
271F1 -- 88CAN communication failure : TOD (E32 only)
291F1 -- 89CAN communication failure : ID 200h not plausible
301F1 -- 89CAN communication failure : ID 208h not plausible
311F1 -- 89CAN communication failure : communication initialization failure
321F1 -- 78Engine rpm output circuit short circuit to battery
331F1 -- 78Engine rpm output circuit short circuit to ground or open
341F1 -- 43Fuel pump relay short circuit to battery
351F1 -- 43Fuel pump relay short circuit to ground or open
1F1 -- 16 M162 ENGINE CONTROLS
D AEW OO M Y_2000
FAILURE CODES TABLE (Cont’d)
Failure
codeSee
PageDescription
1031F1 -- 83Bank 1 system learning control failure (lean, high load)
1041F1 -- 57Throttle position sensor 1 low voltage
1051F1 -- 57Throttle position sensor 1 high voltage
1081F1 -- 57Throttle position sensor 2 low voltage
1091F1 -- 57Throttle position sensor 2 high voltage
1101F1 -- 92Throttle actuator learning data fault
1161F1 -- 57Throttle actuator learning control failure
1171F1 -- 92Exceed fuel-- cut safety time
1191F1 -- 57Throttle valve return spring failure
1201F1 -- 92Cruise control interruption memory failure
1211F1 -- 57Throttle actuator failure
1221F1 -- 69Accelerator pedal position sensor signal failure
1231F1 -- 57Different Mass air flow sensor signal with throttle position sensor
1251F1 -- 57Both throttle position sensors failure
1261F1 -- 58Throttle position sensor 1 not plausible with throttle position sensor 2
1271F1 -- 58High permanent throttle signal
1291F1 -- 74Cruise control “OFF” due to message counter failure
1301F1 -- 74Vehicle speed signal failure
1311F1 -- 74Vehicle speed signal failure
1321F1 -- 74Cruise control lever failure
1331F1 -- 74Cruise control acceleration failure
1341F1 -- 74Cruise control deceleration failure
1351F1 -- 77Stop lamp switch failure
1361F1 -- 90ECU failure (RAM)
1371F1 -- 90ECU failure (EPROM)
1381F1 -- 92Call monitoring
1391F1 -- 92Servo motor control output interruption memory failure
1401F1 -- 92Servo motor open/short
1411F1 -- 94Unprogramed ECU with immobilizer
1421F1 -- 90Uncoded/unprogramed ECU
1431F1 -- 90ECU failure (EEPROM/Flash -- EPROM checksum failure)
1441F1 -- 90ECU failure (coding ID checksum failure)
1451F1 -- 90ECU failure (coding checksum failure)
1461F1 -- 90ECU failure (programing checksum failure)
1501F1 -- 75TCS input signal short circuit to battery
1511F1 -- 75TCS input signal short circuit to ground or open
1601F1 -- 69Accelerator pedal position sensor 1 low voltage
1611F1 -- 69Accelerator pedal position sensor 1 high voltage
1621F1 -- 69Accelerator pedal position sensor 2 low voltage
1631F1 -- 69Accelerator pedal position sensor 2 high voltage
1641F1 -- 69Accelerator pedal position sensor 1 not plausible with pedal position sensor 2
1F1 -- 40 M162 ENGINE CONTROLS
D AEW OO M Y_2000
FUEL SYSTEM
The function of the fuel metering system is to deliver the correct amount of fuel to the engine under all operating condi-
tions. The fuel is delivered to the engine by the individual fuel injectors mounted into the intake manifold near each
cylinder.
The main fuel control sensors are the Mass Air Flow (MAF) sensor and the oxygen (O2) sensors.
The MAF sensor monitors the mass flow of the air being drawn into the engine. An electrically heated element is
mounted in the intake air stream, where it is cooled by the flow of incoming air. Engine Control Module (ECM) modu-
lates the flow of heating current to maintain the temperature differential between the heated film and the intake air at a
constant level. The amount of heating current required to maintain the temperature thus provides an index for the
mass air flow. This concept automatically compensates for variations in air density, as this is one of the factors that
determines the amount of warmth that the surrounding air absorbs from the heated element. MAF sensor is located
between the air filter and the throttle valve.
Under high fuel demands, the MAF sensor reads a high mass flow condition, such as wide open throttle. The ECM
uses this information to enrich the mixture, thus increasing the fuel injector on-- time, to provide the correct amount of
fuel. When decelerating, the mass flow decreases. This mass flow change is sensed by the MAF sensor and read by
the ECM, which then decreases the fuel injector on-- time due to the low fuel demand conditions.
The O2 sensors are located in the exhaust pipe before catalytic converter. The O2 sensors indicate to the ECM the
amount of oxygen in the exhaust gas, and the ECM changes the air/fuel ratio to the engine by controlling the fuel
injectors. The best air/fuel ratio to minimize exhaust emissions is 14.7 to 1, which allows the catalytic converter to
operate most efficiently. Because of the constant measuring and adjusting of the air/fuel ratio, the fuel injection system
is called a “closed loop” system.
The ECM uses voltage inputs from several sensors to determine how much fuel to provide to the engine. The fuel is
delivered under one of several conditions, called ‘‘modes”.
Starting Mode
When the ignition is turned ON, the ECM turns the fuel pump relay on for 1 second. The fuel pump then builds fuel
pressure. The ECM also checks the Engine Coolant Temperature (ECT) sensor and the Throttle Position (TP) sensor
and determines the proper air/fuel ratio for starting the engine. This ranges from 1.5 to 1 at -- 36°C(--33°F) coolant
temperature to 14.7 to 1 at 94°C (201°F) coolant temperature. The ECM controls the amount of fuel delivered in the
starting mode by changing how long the fuel injector is turned on and off. This is done by ‘‘pulsing” the fuel injectors for
very short times.
Run Mode
The run mode has two conditions called ‘‘open loop” and ‘‘closed loop”.
Open Loop
When the engine is first started and it is above 690 rpm, thesystem goes into “open loop” operation. In “open loop”, the
ECM ignores the signal from the HO2S and calculates the air/fuel ratio based on inputs from the ECT sensor and the
MAF sensor. The ECM stays in “open loop” until the following conditions are met:
DThe O2 has a varying voltage output, showing that it is hot enough to operate properly.
DThe ECT sensor is above a specified temperature (22.5°C).
DA specific amount of time has elapsed after starting the engine.
Closed Loop
The specific values for the above conditions vary with different engines and are stored in the Electronically Erasable
Programmable Read -- Only Memory (EEPROM). When these conditions are met, thesystem goes into “closed loop”
operation. In “closed loop”, the ECM calculates the air/fuel ratio (fuel injector on-- time) based on the signals from the
O2 sensors. This allows the air/fuel ratio to stay very close to 14.7 to 1.
Acceleration Mode
The ECM responds to rapid changes in throttle position and airflow and provides extra fuel.
Deceleration Mode
The ECM responds to changes in throttle position and airflow and reduces the amount of fuel. When deceleration is
very fast, the ECM can cut off fuel completely for short periods of time.
M162 ENGINE CONTROLS 1F1 -- 57
D AEW OO M Y_2000
KAB1F240
Failure
CodeDescriptionTrouble AreaMaintenance Hint
104Throttle position sensor
1 low voltageTPS 1 short circuit to ground
or open
105Throttle position sensor
1 high voltageTPS 1 short circuit to power
108Throttle position sensor
2 low voltageTPS 2 short circuit to ground
or open
109Throttle position sensor
2 high voltageTPS 2 short circuit to powerDMonitoring the actual values through
scantool
116Throttle actuator
learning control failureWhen actuator adaption
fluctuation or not meet the
conditionscantool
DInspection the ECM pin 84, 85, 87,
112, 67, 68 about short circuit or open
with bad contact
119Throttle valve return
spring failureWhen return spring defective
of actuator
withbadcontact
DInspection the throttle valve actuator
DInspection the ECM
121Throttle actuator failureWhen supply voltage of the
actuator short circuit to power
InspectiontheECM
123
Different mass air flow
sensor signal with
throttle position sensorWhen shut down of output
driver
125Both throttle position
sensor failureWhen defective of both
potentiometers
1F1 -- 58 M162 ENGINE CONTROLS
D AEW OO M Y_2000
Failure
CodeDescriptionTrouble AreaMaintenance Hint
126
Throttle position sensor
1 not plausible with
Throttle position sensor
2
When difference between
TPS 1 and TPS 2DMonitoring the actual values through
scan tool
DIns
pection the ECMpin 84, 85, 87,
127High permanent throttle
signalWhen failure of wiring
harness or actuator
DInspectiontheECMpin84,85,87,
112, 67, 68 about short circuit or open
with bad contact
Itiththttlltt
185
Mass air flow sensor
and throttle position
sensor failureWhen difference between
MAF and TPS signal
DInspection the throttle valve actuator
DInspection the ECM
Circuit Description
The ECM supplies a 5 volt reference signal and a ground to the TP sensor. The TP sensor sends a voltage signal back
to the ECM relative to the throttle plate opening. The voltage signalwill vary from approximately 0.3 ~ 0.9 volts at
closed throttle, to over 4.0 ~ 4.6 volts at Wide Open Throttle (WOT).
The TP sensors serve for engine load control according to the drive pedal command. Load adjustments independent of
the drive pedal command can be implemented; such functions are, for instance, idle control, speed control, drive slip
control, load shock damping, and similar functions.
When the actuator current fails, the throttle valve is returned to emergency operating position by a spring. The throttle
valve position, thereby the actuator drive position checkback is provided by two potentiometers. The motor positions
the throttle valve against the return spring force. Motor and return spring are two separate energy sources. Each of
them is able to position the throttle valve in emergency position alone. Throttle valve position checkback and monitor-
ing is provided by two actual value potentiometers connected to the engine control electronics.
Throttle Actuator Inspection
1. Turn the ignition switch to “ON” position.
2. Measure the TPS 1 signal voltage at the ECM pin No. 87 and TPS 2 signal voltage at the ECM pin No. 85.
Pedal PositionSpecified Value
TPS1Closed0.3 ~ 0.9 vTPS1Opened4.0 ~ 4.6 v
TPS2Closed4.0 ~ 4.6 vTPS2Opened0.3 ~ 0.9 v
Throttle Actuator DC Motor Inspection
1. Turn the ignition switch to “ON” position.
2. Measure the signal voltage between the ECM pin No. 67 and No. 68.
Application
Specified Value
Ignition “ON”0.8 ~ 2.3 v
Engine StatusIdling1.0 ~ 2.5 v
(Coolant temperature is over 70°C)
Throttle Actuator DC Motor Resistance
1. Turn the ignition switch to “OFF” position.
2. Measure the resistance between the ECM pin No. 67 and No. 68.
Specified Value
<10Ω
M162 ENGINE CONTROLS 1F1 -- 63
D AEW OO M Y_2000
Mass Air Flow Sensor Input Voltage Inspection
1. Turn the ignition switch to “ON” position.
2. Measure the signal voltage between the ECM pin No. 103 and No. 104.
Application
Specified Value
Ignition “ON”0.9 ~ 1.1 v
Engine StatusIdling1.3 ~ 1.7 v
(Coolant temperature is over 70°C)
Notice:If the measured value is not within the specified value, the possible cause may be in cable or MAF sensor in
itself. Perform the 5 volt power supply inspection procedures.
Mass Air Flow Sensor 5 volt Power Supply Inspection
1. Turn the ignition switch to “OFF” position.
2. Disconnect the HFM sensor connector.
3. Turn the ignition switch to “ON” position.
4. Measure the voltage between the ECM pin No. 108 and MAF sensor connecter terminal No. 3.
Specified Value
4.7~5.2v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.
5. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 4.
Specified Value
4.7~5.2v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.
Mass Air Flow Sensor 12 volt Power Supply Inspection
1. Turn the ignition switch to “OFF” position.
2. Disconnect the HFM sensor connector.
3. Turn the ignition switch to “ON” position.
4. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 2.
Specified Value
11 ~ 14 v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or Over Voltage
Protection Relay (OVPR).
1F1 -- 66 M162 ENGINE CONTROLS
D AEW OO M Y_2000
KAB1F260
Failure
CodeDescriptionTrouble AreaMaintenance Hint
00
Engine coolant
temperature sensor low
voltageECT sensor short circuit to
ground or open
01
Engine coolant
temperature sensor high
voltageECT sensor short circuit to
power
DMonitoring the actual coolant
temperaturethroughscantool
02
Engine coolant
temperature sensor
plausibilityMalfunction in recognition of
ECT
When drop to about 50°C
below after warm uptemperaturethroughscantool
DInspection the ECM pin 78, 79 about
short circuit or open with bad contact
DInspection the ECT sensor
DIns
pection the ECM
06
Engine coolant
temperature insufficient
for closed loop fuel
controlMalfunction in recognition of
ECT
When minimum temperature
for lambda control after warm
up
DInspectiontheECM
Circuit Description
The ECT sensor uses a thermistor to control the signal voltage to the ECM. The ECM supplies a voltage on the signal
circuit to the sensor. When the engine coolant is cold, the resistance is high; therefore the ECT signal voltagewill be
high
Engine Coolant Temperature Sensor Inspection
1. Turn the ignition switch to “ON” position.
2. Measure the voltage between the ECM pin No. 78 and No. 79.
Temperature (°C)
Specified Value (V)
203.57
801.22
1000.78