Page 668 of 751

14-74170-09
2) Typical Inspection
Tread
Inspect the tread condition on the tire surface
and various damages resulting from the
foreign materials, crack, stone or nail etc. If
there is any damage in the tire, repair or
replace it. 1.
Wear limit 2.
Measure the depth of the tire tread. If the
depth of the tread is below the specified
value, replace the tire -
You can see the protruded part in the
groove at the point with mark "▲", which
is the indicator of the tread wear limit.
The limit of the tread wear for all season
tires are 1.6 mm, which is the same as the
general tires, but the wear limit mark is
indicated as '↓'. -
-
Wear limit 1.6 mm
Higher than recommended pressure can cause hard ride, tire bruising or damage and rapid tread
wear at the center of the tire.
Excessive tire wear over the limit of the tread wear (1.6 mm) can cause lower sliding friction due to
longer braking distance, easy tire burst by foreign materials, tire hydroplaning, and tough brake and
steering wheel handling. -
-
Page 669 of 751
14-8
Measure the dial runout and lateral runout
on both the inboard and outboard rim
flanges. - Tire inflation pressure -
Check the tire inflation pressure by
inspecting the tread width. -
Specified value 2.66 mm
Wheel runout
If wheel runout or tire runout is excessive, it
could result in abnormal wear of the tire.
Measure the runout with a dial gauge. 4.
Measure free radial runout on the tire tread. -
Specified value 2.03 mm
If any measurement exceeds the above
specifications, replace the applicable tires
or wheels -Tire inflation pressure 3.
Specified value 32 psi
Maintaining the specified tire ressure is
essential for comfortable riding, driving
safety, and long tire life. Incorrect inflation
pressures will increase tire wear and will
impair safety, vehicle handling, comfortable
driving and fuel economy. Always make sure
that the tire inflation pressure is correct.
Proper
inflationProper
inflationOver
inflation
Tread width Tread width Tread width
Page 670 of 751
14-94170-09
Wheel balance 5.
Check the wheel balance when the wheel
is unbalanced or the tire is repaired.
The total weight of the wheel weight
should not exceed 150 g.
Ensure that the balance weight installed is
not projected over 3mm from the wheel
surface.
Use the specified aluminum wheel balance
weights for aluminum wheels.
Weight balance can be added by 5 g.
There are two types of weight balance,
tape type and adhesion type. -
-
-
-
-
-
Make sure to read the manual of the
manufacturer thoroughly before using
wheel balance tester. -
Change tire location
To avoid uneven wear of tires and to prolong
tire life, inspect and rotate your tires every
5,000 km. 6.
Mixing tires could cause to lose control while driving. Be sure to use the same size and type tires of
the same manufacturer on all wheels. -
Page 671 of 751
14-10
5. COMPONENTS
Alloy wheel
Alloy wheel
Alloy wheel
Wheel-steel
Cap ASSY-wheel
Cap ASSY-wheel
Cap ASSY-wheel
Nut 1.
2.
3.
4.
5.
6.
7.
8.
Page 673 of 751
14-12
OVM Tools
Location ▶
Valve insertSpare tire
Jack (pantograph jack)
Wheel wrench
Jack connection
Driver (+, -)
Spanner 1.
2.
3.
4.
5.
Page 676 of 751

14-154170-09
During driving, the rotating tire repeats deformation and restoring movement in is tread. This happens
when the tire pressure is low in high speed driving.
However, when the wheel rotating speed is fast, the tire is deformed even before it is restored to its
original shape and the trembling wave appears on the tread portion. If this symptom lasts for an
extended period of time, the tire can be blown out in a short period of time.
If the standing wave symptom occurs on the tire, rubber on the tread comes off and eventually the tire
can be blown out which is very dangerous. When driving at high speed, the inflation pressure should be
increased to decrease heat generation due to extension and contraction motion, to decrease
hydroplaning and to prevent standing wave.
To prevent this symptom, it is recommended to increase the tire pressure 10 ~ 30 % higher than the
specified pressure value in high speed driving.
Specified tire inflation pressure32psi
2. ABNORMAL TIRE SYMPTOM
Standing Wave ▶
Page 678 of 751

14-174170-09
If weight is not equally distributed around the wheel, unbalance centrifugal force by the wheel rotation
produces vibration. As the centrifugal force is produced proportional to the square of the rotating speed,
the wheel weight should be balanced even at high speed. There are two types of the tire and wheel
balancing: static and dynamic. Abnormal vibration may also occur due to unbalanced rigidity or size of
tires.
Static Balance ▶
When the free rotation of the wheel is allowed,
the heavier part is stopped on the bottom if the
wheel weight is unbalanced and this is called
"Static Unbalance". Also, the state at which tire's
stop position is not same is called "Static
Balance" when the wheel is rotated again. If the
part A is heavier as shown in the figure 1, add
the balance weight of a weight corresponding to
unbalanced weight from B to A to maintain the
static balance. If the static balance is not
maintained, tramping, up and down vibration of
the wheels, occurs.
Dynamic Balance ▶
The static unbalance of the wheel creates the
vibration in the vertical direction, but the dynamic
unbalance creates the vibration in the lateral
direction. As shown in the figure 2 (a), if two
parts, (2) and (3), are heavier when the wheels
are under the static balance condition, dynamic
unbalance is created, resulting in shimmy, left
and right vibration of the wheels, and the torque
Fxa is applied in the axial direction. To correct
the dynamic unbalance, add the balance weight
of a same weight for two points of the
circumference of the rim, A and B, as shown in
the figure 2 (b), and apply the torque in the
opposite direction to the torque Fxa to offset in
order to ensure smooth rotation of the wheel.
Center
A
B
(a) (b)
[Figure 1]
[Figure 2]
3. WHEEL BALANCE
Page 679 of 751

14-18
4. WHEEL ALIGNMENT
▶Toe-in
▶Camber
In automotive engineering, toe, also known as
tracking, is the symmetric angle that each wheel
makes with the longitudinal axis of the vehicle, as a
function of static geometry, and kinematic and
compliant effects. This can be contrasted with
steer, which is the anti-symmetric angle, i.e. both
wheels point to the left or right, in parallel (roughly).
Positive toe, or toe in, is the front of the wheel
pointing in towards the center line of the vehicle.
Negative toe, or toe out, is the front of the wheel
pointing away from the center line of the vehicle.
Toe can be measured in linear units, at the front of
the tire, or as an angular deflection.
Camber is the angle made by the wheels of a
vehicle; specifically, it is the angle between the
vertical axis of the wheels used for steering and
the vertical axis of the vehicle when viewed from
the front or rear. It is used in the design of steering
and suspension. If the top of the wheel is farther
out than the bottom (that is, away from the axle), it
is called positive camber; if the bottom of the
wheel is farther out than the top, it is called
negative camber. Wheel alignment consists of adjusting the angles of the wheels so that they are parallel to each other
and perpendicular to the ground, thus maximizing tire life and ensures straight and true tracking along a
straight and level road.
Camber angle alters the handling qualities of a particular suspension design; in particular, negative
camber improves grip when cornering. This is because it places the tire at a better angle to the road,
transmitting the forces through the vertical plane of the tire rather than through a shear force across it.
Another reason for negative camber is that a rubber tire tends to roll on itself while cornering. Negative
camber can also be caused by excessive weight on the front wheels. This is commonly seen on
modified cars with larger engines than standard; the weight of the modified engine can make the wheels
negatively camber. The inside edge of the contact patch would begin to lift off of the ground if the tire had
zero camber, reducing the area of the contact patch. This effect is compensated for by applying negative
camber, maximizing the contact patch area. Note that this is only true for the outside tire during the turn;
the inside tire would benefit most from positive camber.