3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-79
TYPICAL SCAN DATA & DEFINITIONS (ENGINE DATA)
Use the typical values table only after the On-Board Diagnostic System check has been completed, no DTC(s) were noted, and you have determined that the On-Board
Diagnostic are functioning properly.
Tech2 values from a properly running engine may be used for comparison with the engine you are diagnosing.
Condition : Vehicle stopping, engine running, air conditioning off & after warm-up (Coolant temperature approximately 80C)
Tech 2
Parameter
Units Idle 2000rpm Definitions
1 Ignition Voltage V 10.0 14.5 10.0 14.5 This displays the system voltage measured by the ECM at ignition feed.
2 Engine Speed rpm 710 860 1950 2050 The actual engine speed is measured by ECM from the CKP sensor 58X signal.
3 Desired Idle
Speed rpm 750 770 750 770 The desired engine idle speed that the ECM commanding.
The ECM compensates for various engine loads.
4 Engine Coolant
Temperature C or F 80 90 () 80 90 () The ECT is measured by ECM from ECT sensor output voltage.
When the engine is normally warm upped, this data displays approximately 80 °C or
more.
5 Start Up ECT
(Engine Coolant
Temperature) C or F Depends on ECT
at start-up
Depends on ECT
at start-up
Start-up ECT is measured by ECM from ECT sensor output voltage when engine is
started.
6 Intake Air
Temperature
C or F Depends on
ambient temp.
Depends on
ambient temp.
The IAT is measured by ECM from IAT sensor output voltage.
This data is changing by intake air temperature.
7 Throttle Position % 0 4 6 Throttle position operating angle is measured by the ECM from throttle position
output voltage.
This should display 0% at idle and 99 100% at full throttle.
8 Throttle Position
Sensor V 0.4 0.7 0.6 0.8 The TPS output voltage is displayed.
This data is changing by accelerator operating angle.
9 Mass Air Flow g/s 5.0 8.0 13.0 16.0 This displays intake air amount.
The mass air flow is measured by ECM from the MAF sensor output voltage.
10 Air Fuel Ratio 14.7:1 14.7:1 This displays the ECM commanded value.
In closed loop, this should normally be displayed around 14.2:1 14.7:1.
11 Idle Air Control Steps 10 20 20 30 This displays the ECM commanded position of the idle air control valve pintle.
A larger number means that more air is being commanded through the idle air
passage.
12 EGR Valve V 0.00 0.00 0.10 The EGR position sensor output voltage is displayed.
This data is changing by EGR valve solenoid operating position.
13 Desired EGR
Opening V 0.00 0.05 1.10 The ECM commanded EGR position sensor voltage is displayed.
According to the current position, ECM changes EGR valve solenoid operating
position to meet the desired position.
14 EGR Valve On
Duty % 0 32 – 38 This displays the duty signal from the ECM to control the EGR valve.
15 Engine Load % 2 7 8 15 This displays is calculated by the ECM form engine speed and MAF sensor reading.
Engine load should increase with an increase in engine speed or air flow amount.
16 B1 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
17 B2 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
When the engine is first started the system is in "Open Loop" operation.
In "Open Loop", the ECM ignores the signal from the oxygen sensors.
When various conditions (ECT, time from start, engine speed & oxygen sensor
output) are met, the system enters "Closed Loop" operation.
In "Closed Loop", the ECM calculates the air fuel ratio based on the signal from the
oxygen sensors.
18 Fuel Trim
Learned (Bank 1) Yes/No Yes Yes
19 Fuel Trim
Learned (Bank 2) Yes/No Yes Yes
When conditions are appropriate for enabling long term fuel trim corrections, fuel trim
learn will display "Yes".
This indicates that the long term fuel trim is responding to the short term fuel trim.
If the fuel trim lean displays "No", then long term fuel trim will not respond to changes
in short term fuel trim.
20 Injection Pulse
Bank 1 ms 2.0 4.0 2.0 4.0
21 Injection Pulse
Bank 2 ms 2.0 4.0 2.0 4.0
This displays the amount of time the ECM is commanding each injector On during
each engine cycle.
A longer injector pulse width will cause more fuel to be delivered. Injector pulse width
should increase with increased engine load.
22 Spark Advance °CA 10 15 35 42 This displays the amount of spark advance being commanded by the ECM.
6E-80 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Tech 2
Parameter
Units Idle 2000rpm Definitions
23 A/C Request (Air
Conditioning) On/Off Off Off This displays the air conditioner request signal. This should display "On" when the air
conditioner switch is switched on.
24 A/C Clutch On/Off Off Off This displays whether the ECM has commanded the A/C compressor clutch "On" or
"Off".
25 EVAP Purge
Solenoid
(Evaporative
Emission) % 50 80 0 This displays the duty signal from the ECM to control the canister purge solenoid
valve.
26 Fuel Trim Cell 49 52 13 17 This displays dependent on engine speed and MAF sensor reading.
A plot of engine speed versus MAF amount is divided into the cells.
Fuel trim cell indicates which cell is currently active.
27 Fuel Pump On/Off On On This displays operating status for the fuel pump main relay.
This should display "On" when the key switch is turned on and while engine is
running.
28 Deceleration Fuel
Cutoff Active/ Inactive Inactive Inactive The ECM will command the deceleration fuel mode when it detects a closed throttle
position while the vehicle is traveling.
While in decreasing fuel mode, the ECM will decrease the amount of fuel delivered
by entering open loop and decreasing the injector pulse width.
29 Power Enrichment Yes/No No No The ECM will command power enrichment mode "Yes" when a large increase in
throttle position and load is detected.
While in power enrichment mode, the ECM will increase the amount of fuel delivered
by entering open loop and increasing the injector pulse width.
30 Vehicle Speed km/h or mph 0 0 This displays vehicle speed.
The vehicle speed is measured by ECM from the vehicle speed sensor.
31 Cam Signal Present/ Missing Present Present This displays input signal from the camshaft position sensor.
When the correct pulse is generated, signal is received.
32 PSP Switch
(Power Steering
Pressure) Normal Pressure /
High Pressure Normal PressureNormal PressureThis displays the power steering pressure signal.
This should display "High Pressure" when the steering is steered.
33 Security Code
Status Programmable/
Not
Programmable Programmable Programmable This should display "Programmable" when the correct security code & secret code
are programmed.
34 Security Code Okay/ Not Okay Okay Okay This should display "Okay" when the security code is correctly accepted.
35 Immobilizer
System Normal /
Abnormal Normal Normal This should display "Normal" when the immobilizer is correctly operated.
36 Malfunction
Indicator Lamp On/Off Off Off This displays operating status for the Check Engine Lamp.
This should display "On" when the Check Engine Lamp is turned on.
37 Time From Start This displays the engine time elapsed since the engine was started.
If the engine is stopped, engine run time will be reset to 00:00:00
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-81
TYPICAL SCAN DATA & DEFINITIONS (O2 SENSOR DATA)
Use the typical values table only after the On-Board Diagnostic System check has been completed, no DTC(s) were noted, and you have determined that the On-Board
Diagnostic are functioning properly.
Tech2 values from a properly running engine may be used for comparison with the engine you are diagnosing.
Condition : Vehicle stopping, engine running, air conditioning off & after warm-up (Coolant temperature approximately 80 C)
Tech 2
Parameter
Units Idle 2000rpm Definitions
1 Ignition Voltage V 10.0 14.5 10.0 14.5 This displays the system voltage measured by the ECM at ignition feed.
2 Engine Speed rpm 710 860 1950 2050 The actual engine speed is measured by ECM from the CKP sensor 58X signal.
3 Desired Idle
Speed rpm 750 770 750 770 The desired engine idle speed that the ECM commanding.
The ECM compensates for various engine loads.
4 Engine Coolant
Temperature C or F 80 90 (C) 80 90 (C) The ECT is measured by ECM from ECT sensor output voltage.
When the engine is normally warm upped, this data displays approximately 80 °C or
more.
5 Start Up ECT
(Engine Coolant
Temperature) C or F Depends on ECT
at start-up
Depends on ECT
at start-up
Start-up ECT is measured by ECM from ECT sensor output voltage when engine is
started.
6 Throttle Position % 0 4 6 Throttle position operating angle is measured by the ECM from throttle position
output voltage.
This should display 0% at idle and 99 100% at full throttle.
7 Throttle Position
Sensor V 0.4 0.7 0.6 0.8 The TPS output voltage is displayed.
This data is changing by accelerator operating angle.
8 Mass Air Flow g/s 5.0 8.0 13.0 16.0 This displays intake air amount.
The mass air flow is measured by ECM from the MAF sensor output voltage.
9 Air Fuel Ratio 14.7:1 14.7:1 This displays the ECM commanded value. In closed loop, this should normally be
displayed around 14.2:1 14.7:1.
10 Engine Load % 2 7 8 15 This displays is calculated by the ECM form engine speed and MAF sensor reading.
Engine load should increase with an increase in engine speed or air flow amount.
11 B1 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
12 B2 Fuel System
Status Open Loop/ Close
Loop Close Loop Close Loop
When the engine is first started the system is in "Open Loop" operation.
In "Open Loop", the ECM ignores the signal from the oxygen sensors.
When various conditions (ECT, time from start, engine speed & oxygen sensor
output) are met, the system enters "Closed Loop" operation.
In "Closed Loop", the ECM calculates the air fuel ratio based on the signal from the
oxygen sensors.
13 B1S1 O2 Sensor
(Bank1 Sensor 1)
mV 50 950 50 950
14 B2S1 O2 Sensor
(Bank2 Sensor 1)
mV 50 950 50 950
This displays the exhaust oxygen sensor output voltage.
Should fluctuate constantly within a range between 10mV (lean exhaust) and
1000mV (rich exhaust) while operating in closed loop.
15 B1 O2 Sensor
Ready (Bank 1)
Yes/No Yes Yes
16 B2 O2 Sensor
Ready (Bank 2)
Yes/No Yes Yes
This displays the status of the exhaust oxygen sensor.
This display will indicate "Yes" when the ECM detects a fluctuating oxygen sensor
output voltage sufficient to allow closed loop operation.
This will not occur unless the oxygen sensor is warmed up.
17 B1 Long Term
Fuel Trim (Bank
1)
% -10 20 -10 20
18 B2 Long Term
Fuel Trim (Bank
2)
% -10 20 -10 20
The long term fuel trim is delivered from the short term fuel term values and
represents a long term correction of fuel delivery for bank in question.
A value of 0% indicates that fuel delivery requires no compensation to maintain the
ECM commanded air fuel ratio.
A negative value indicates that the fuel system is rich and fuel delivery is being
reduced (decreased injector pulse width).
A positive value indicates that a lean condition exists and the ECM is compensating
by add fuel (increased injector pulse width).
Because long term fuel trim tends to follow short term fuel trim, a value in the
negative range due to canister purge at idle should not be considered unusual.
Excessive long term fuel trim values may indicate an rich or lean condition.
6E-82 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Tech 2
Parameter
Units Idle 2000rpm Definitions
19 B1 Short Term
Fuel Trim (Bank
1)
% -10 20 -10 20
20 B2 Short Term
Fuel Trim (Bank
2)
% -10 20 -10 20
The short term fuel trim to a bank represents a short term correction to the bank fuel
delivery by the ECM in response to the amount of time the bank fuel control oxygen
sensor voltage spends above or below the 450mV threshold.
If the oxygen sensor voltage has mainly remained less than 450mV, indicating a lean
air/fuel, short term fuel trim will increase into the positive range above 0% and the
ECM will pass fuel.
If the oxygen sensor voltage stays mainly above the threshold, short term fuel trim
will decrease below 0% into the negative range while the ECM reduces fuel delivery
to compensate for the indicated rich condition.
Under certain conditions such as extended idle and high ambient temperatures,
canister purge may cause short term fuel trim to read in the negative range during
normal operation.
Excessive short term fuel trim values may indicate an rich or lean condition.
21 Fuel Trim Cell 49 52 13 17 This displays dependent on engine speed and MAF sensor reading.
A plot of engine speed versus MAF amount is divided into the cells.
Fuel trim cell indicates which cell is currently active.
22 Fuel Trim
Learned (Bank 1) Yes/No Yes Yes
23 Fuel Trim
Learned (Bank 2) Yes/No Yes Yes
When conditions are appropriate for enabling long term fuel trim corrections, fuel trim
learn will display "Yes".
This indicates that the long term fuel trim is responding to the short term fuel trim.
If the fuel trim lean displays "No", then long term fuel trim will not respond to changes
in short term fuel trim.
24 B1S1 Status
(Bank 1 Sensor 1)
Rich / Lean Rich / Lean Rich / Lean
25 B2S1 Status
(Bank 2 Sensor 1)
Rich / Lean Rich / Lean Rich / Lean
This displays dependent on the exhaust oxygen sensor output voltage.
Should fluctuate constantly "Rich" and "Lean" in closed loop.
6E-98 3.5L ENGINE DRIVEABILITY AND EMISSIONS
On-Board Diagnostic (OBD) System Check
Step Action Value (s) Yes No
1
1. Ignition "On", engine "Off".
2. Check the "CHECK ENGINE" lamp (MIL).
Does the "CHECK ENGINE" lamp turn "On"?
- Go to Step 2
Go to No CHECK
ENGINE Lamp
2
1. Using the Tech 2, ignition "On" and engine "Off".
2. Attempt to display "Engine Data" with the Tech 2.
Does the Tech 2 display "Engine Data" and "O2
Sensor Data"?
- Go to Step 3
Go to Step 7
3
1. Using the Tech 2, ignition "On" and engine "Off".
2. Select the "Miscellaneous Test" and perform the
"Malfunction Indicator Lamp" in "Lamps".
3. Operate the Tech 2 in accordance with the Tech 2
instructions.
Does the "CHECK ENGINE" lamp turn "Off"?
- Go to Step 4
Go to CHECK
ENGINE LAMP
On Steady
4
Attempt to start the engine. Does the engine start and
continue to "Run"?
- Go to Step 5
Go to Engine
Cranks But Will
Not Run
5
1. Using the Tech 2, ignition "On" and engine "Off".
2. Select the "Read DTC In for By Priority" in
"Diagnostic Trouble Code".
Are any DTCs stored?
- Go to DTC Chart
Go to Step 6
6
Compare typical scan data values displayed on the
Tech 2 "Engine Data" and "O2 Sensor Data".
Are the displayed values within the range?
- Refer to
SYMPTOM
DIAGNOSIS Refer to
TYPICAL SCAN
DATA
7
Using the DVM and check the data link connector
power supply circuit.
1. Ignition "Off", engine "Off".
2. Check the circuit for open circuit.
Was the problem found?
V
B-58
-
Repair faulty
harness and
verify repair
Go to Step 8
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-117
CIRCUIT DESCRIPTION
When the ignition switch is turned “ON," the Engine
Control Module (ECM) will turn “ON" the in-tank fuel
pump. The in-tank fuel pump will remain “ON" as long
as the engine is cranking or running and the ECM is
receiving 58X crankshaft position pulses. If there are no
58X crankshaft position pulses, the ECM will turn the
in-tank fuel pump “OFF" 2 seconds after the ignition
switch is turned “ON" or 2 seconds after the engine
stops running.
The in-tank fuel pump is an electric pump within an
integral reservoir. The in-tank fuel pump supplies fuel
through an in-line fuel filter to the fuel rail assembly. The
fuel pump is designed to provide fuel at a pressure
above the pressure needed by the fuel injectors. A fuel
pressure regulator, attached to the fuel rail, keeps the
fuel available to the fuel injectors at a regulated
pressure. Unused fuel is returned to the fuel tank by a
separate fuel return line.
TEST DESCRIPTION
Number(s) below refer to the step number(s) on the
Diagnostic Chart.
2. Connect the fuel pressure gauge to the fuel feed line
as shown in the fuel system illustration. Wrap a shop
towel around the fuel pressure connection in order to
absorb any fuel leakage that may occur when
installing the fuel pressure gauge. With the ignition
switch “ON" and the fuel pump running, the fuel
pressure indicated by the fuel pressure gauge
should be 333-376 kPa (3.4-3.8 kg/cm
2 / 48-55 psi).
This pressure is controlled by the amount o
f
pressure the spring inside the fuel pressure regulator
can provide.
3. A fuel system that cannot maintain a constant fuel
pressure has a leak in one or more of the following
areas:
The fuel pump check valve.
The fuel pump flex line.
The valve or valve seat within the fuel pressure
regulator.
The fuel injector(s).
4. Fuel pressure that drops off during acceleration,
cruise, or hard cornering may case a lean condition.
A lean condition can cause a loss of power, surging,
or misfire. A lean condition can be diagnosed using
a Tech 1 Tech 2. If an extremely lean condition
occurs, the oxygen sensor(s) will stop toggling. The
oxygen sensor output voltage(s) will drop below 500
mV. Also, the fuel injector pulse width will increase.
Important: Make sure the fuel system is not operating
in the “Fuel Cut-Off Mode."
When the engine is at idle, the manifold pressure is
low (high vacuum). This low pressure (high vacuum)
is applied to the fuel pressure regulator diaphragm.
The low pressure (high vacuum) will offset the
pressure being applied to the fuel pressure regulato
r
diaphragm by the spring inside the fuel pressure
regulator. When this happens, the result is lower fuel
pressure. The fuel pressure at idle will vary slightly
as the barometric pressure changes, but the fuel
pressure at idle should always be less than the fuel
pressure noted in step 2 with the engine “OFF."
16.Check the spark plug associated with a particula
r
fuel injector for fouling or saturation in order to
determine if that particular fuel injector is leaking. I
f
checking the spark plug associated with a particular
fuel injector for fouling or saturation does no
t
determine that a particular fuel injector is leaking,
use the following procedure:
Remove the fuel rail, but leave the fuel lines and
injectors connected to the fuel rail. Refer to Fue
l
Rail Assembly in On-Vehicle Service.
Lift the fuel rail just enough to leave the fuel
injector nozzles in the fuel injector ports.
CAUTION: In order to reduce the risk of fire and
personal injury that may result from fuel spraying
on the engine, verify that the fuel rail is positioned
over the fuel injector ports and verify that the fuel
injector retaining clips are intact.
Pressurize the fuel system by connecting a 10
amp fused jumper between B+ and the fuel pump
relay connector.
Visually and physically inspect the fuel injector
nozzles for leaks.
17. A rich condition may result from the fuel pressure
being above 376 kPa (55 psi). A rich condition may
cause a DTC P0132 or a DTC P0172 to set.
Driveability conditions associated with rich conditions
can include hard starting (followed by black smoke)
and a strong sulfur smell in the exhaust.
20.This test determines if the high fuel pressure is due
to a restricted fuel return line or if the high fuel
pressure is due to a faulty fuel pressure regulator.
21.A lean condition may result from fuel pressure belo
w
333 kPa (48 psi). A lean condition may cause a DTC
P0131 or a DTC P0171 to set. Driveability conditions
associated with lean conditions can include hard
starting (when the engine is cold ), hesitation, poo
r
driveability, lack of power, surging , and misfiring.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-131
Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up) Recovery Condition Related Failure Parts Related
ECM Pin
No. Related
Multiple
DTC
P0101 B Mass Air Flow Sensor Circuit
Range/Performance 1. No DTC relating to barometer sensor, TPS,
CMP sensor, CKP sensor and MAF sensor
(low input & high input).
2. Engine speed is between 2800rpm and
4500rpm.
3. Throttle position sensor output voltage is
between 1V and 3V.
4. Intake air temperature is between -14C and
70C.
5. Air flow amount below 0.04g/s (small air) or
more than 177g/s (large air). Above
conditions are met for 3 seconds. No fail-safe function. Air flow amount is more than
0.04g/s or below 177g/s. 1. Air intake is obstructed.
2. Sensor signal circuit short to voltage circuit.
3. MAF sensor malfunction.
4. Electrical interference.
5. ECM malfunction. B20/
B39 - P0102 A Mass Air Flow Sensor Circuit
Low Input MAF sensor output voltage is below 0.3V. MAF sensor output voltage is
more than 0.3V. 1. Sensor power supply circuit open circuit.
2. Sensor signal circuit open or short to ground
circuit.
3. Poor connector connection.
4. MAF sensor malfunction.
5. ECM malfunction. B20 -
61
P0103 A Mass Air Flow Sensor Circuit
High Input MAF sensor output voltage is more than 4.9V. The ECM uses default mass
air flow value based on IAC
valve position, throttle position,
barometer pressure and
engine speed.
MAF sensor output voltage is
below 4.9V. 1. Sensor signal circuit short to voltage circuit.
2. Sensor ground circuit open or short to voltage
circuit.
3. MAF sensor malfunction.
4. ECM malfunction. B20/
B39 P0113/
P0123/
P0341/
P0342
P0112 A Intake Air Temperature Sensor
Low Input IAT sensor output voltage is below 0.08V. IAT sensor output voltage is
more than 0.08V. 1. Sensor signal circuit short to ground circuit.
2. IAT sensor malfunction.
3. ECM malfunction. A19 -
23
P0113 A Intake Air Temperature Sensor
High Input IAT sensor output voltage is more than 4.9V. The ECM use 40C conditions
as substitute.
IAT sensor output voltage is
below 4.9V. 1. Sensor signal circuit open or short to voltage
circuit.
2. Sensor ground circuit open or short to voltage
circuit.
3. Poor connector connection
4. IAT sensor malfunction.
5. ECM malfunction. A19/
B39 P0103/
P0123/
P0341/
P0342
6E-132 3.5L ENGINE DRIVEABILITY AND EMISSIONS Flash
Code Code Type DTC Name DTC Setting Condition Fail-Safe (Back Up) Recovery Condition Related Failure Parts Related
ECM Pin
No. Related
Multiple
DTC
P0117 A Engine Coolant Temperature
Sensor Low Input ECT sensor output voltage is below 0.08V. ECT sensor output voltage is
more than 0.08V. 1. Sensor signal circuit short to ground circuit.
2. ECT sensor malfunction.
3. ECM malfunction. A21 -
14
P0118 A Engine Coolant Temperature
Sensor High Input ECT sensor output voltage is more than 4.8V. The ECM uses default engine
coolant temperature value
based on start-up ECT and
time from start.
ECT sensor output voltage is
below 4.8V. 1. Sensor signal circuit open or short to voltage
circuit.
2. Sensor ground circuit open or short to voltage
circuit.
3. Poor connector connection
4. ECT sensor malfunction.
5. ECM malfunction. A21/
A22 P0406
1. No DTC relating to barometer sensor, ECT
sensor, CMP sensor, CKP sensor, MAF
sensor and TPS (low input & high input).
2. Engine speed is more than 2000rpm.
3. Engine coolant temperature is more than
75C.
4. TPS output voltage is between 0.24V and
0.26V. Above conditions are met for 3
seconds.
OR
P0121 A Throttle Position Sensor
Range/Performance
1. No DTC relating to barometer sensor, ECT
sensor, CMP sensor, CKP sensor, MAF
sensor and TPS (low input & high input).
2. Engine speed is below 3200rpm.
3. Engine coolant temperature is more than
75C.
4. TPS output voltage is between 4.54V and
4.56V. Above conditions are met for 3
seconds. No fail-safe function. TPS output voltage is below
0.24V or more than 0.26V.
OR
TPS output voltage is below
4.54V or more than 4.56V. 1. TPS malfunction.
2. Sensor signal circuit short to voltage circuit.
3. Electrical interference.
4. ECM malfunction. B27/
B26/
B39 - P0122 A Throttle Position Sensor Low
Input TPS output voltage is below 0.24V. TPS output voltage is more
than 0.24V. 1. Sensor power supply circuit open or short to
ground circuit.
2. Sensor signal circuit open or short to ground
circuit.
3. Poor connector connection.
4. TPS malfunction.
5. ECM malfunction. B27/
B26 P0336/
P0337
or
P0342
21
P0123 A Throttle Position Sensor High
Input TPS output voltage is more than 4.56V. The ECM uses default throttle
position value based on mass
air flow and engine speed.
TPS output voltage is below
4.56V. 1. Sensor power supply circuit short to voltage
circuit.
2. Sensor signal circuit short to voltage circuit.
3. Sensor ground circuit open or short to voltage
circuit.
4. Poor connector connection.
5. TPS malfunction.
6. ECM malfunction. B27/
B26/
B39 P0103/
P0113/
P0341/
P0342