6E-48 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Signal or Continuity Tester Position Pin
No. B/Box
No. Pin Function Wire
Color
Key SW Off Key SW On Engine IdleEngine
2000rpm ECM
Connection Range (+) (-)
B32 B32 Vehicle Speed
Signal
(Immobilizer
Control Unit
Terminal B8) WHT - - Wave form or approx. 6.5V at
20km/h Connect AC V B32 GND
B33 B33 Ignition Switch BLU/
YELLess than 1V 10-14V Connect DC V B33 GND
B34 B34 Back Up
Power Supply RED/
WHT 10-14V Connect DC V B34 GND
B35 B35 No Connection - - - - - - - - -
B36 B36 ECM Main
Relay RED/
BLUWhile main
relay is
activated:
10-14V
Main relay is
not activated:
Less than 1V 10-14V Connect DC V B36 GND
B37 B37 ECM Main
Relay RED/
BLUWhile main
relay is
activated:
10-14V
Main relay is
not activated:
Less than 1V 10-14V Connect DC V B37 GND
B38 B38 To Data Link
Connect to No.
2 GRN - - - - - - - -
B39 B39 TPS, MAF, IAT
& CMP Sensor
Ground RED Continuity
with ground - - - Connect Ohm B39 GND
B40 B40 No Connection - - - - - - - - -
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-49
Camshaft Position (CMP) Sensor Reference Wave Form
0V
Measurement Terminal: B28(+) B39(-)
Measurement Scale: 5V/div 10ms/div
Measurement Condition: Approximately 2000rpm
Crankshaft Position (CKP) Sensor Reference Wave Form
0V
Measurement Terminal: A23(+) A25(-)
Measurement Scale: 2.0V/div 5ms/div
Measurement Condition: Approximately 2000rpm
Crankshaft Position (CKP) Sensor & Camshaft Position (CMP)
Sensor Reference Wave Form
CH1
0V
CH2
0V
Measurement Terminal: CH1: A23(+) / CH2: B28(+) GND(-)
Measurement Scale: 2V/div / CH2: 5V/div 10ms/div
Measurement Condition: Approximately 2000rpm
Crankshaft Position (CKP) Sensor & Tacho Output Signal
Reference Wave Form
CH1
0V
CH2
0V
Measurement Terminal: CH1: A23(+) / CH2: B12(+) GND(-)
Measurement Scale: CH1: 2V/div / CH2: 10V/div 5ms/div
Measurement Condition: Approximately 2000rpm
Vehicle Speed Sensor (VSS) Reference Wave Form
CH1
0V
CH2
0V
Measurement Terminal: CH1: ECM B32(+) / CH2: VSS 3(+)
GND(-)
Measurement Scale: CH1: 10V/div / CH2: 10V/div 50ms/div
Measurement Condition: Approximately 20km/h
Note: The vehicle is without immobilizer system,
CH1 signal is same as CH2.
Heated Oxygen Sensor (HO2S) Reference Wave Form
CH1
0V
CH2
0V
Measurement Terminal: CH1: B21(+) / CH2: B23(+) GND(-)
Measurement Scale: CH1: 500mV/div / CH2: 500mV/div 1s/div
Measurement Condition: Approximately 2000rpm in Closed Loop
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-51
GENERAL DESCRIPTION FOR ECM AND
SENSORS
Engine Control Module (ECM)
1 2
(1) A Port
(2) B Port
The engine control module (ECM) is located on the
common chamber. The ECM controls the following.
Fuel metering system
Ignition timing
On-board diagnostics for powertrain functions.
The ECM constantly observes the information from
various sensors. The ECM controls the systems tha
t
affect vehicle performance. And it performs the
diagnostic function of the system.
The function can recognize operational problems, and
warn to the driver through the check engine lamp, and
store diagnostic trouble code (DTC). DTCs identify the
problem areas to aid the technician in marking repairs.
The input / output devices in the ECM include analog to
digital converts, signal buffers, counters and drivers.
The ECM controls most components with electronic
switches which complete a ground circuit when turned
on.
Inputs (Operating condition read):
Battery voltage
Electrical ignition
Exhaust oxygen content
Mass air flow
Intake air temperature
Engine coolant temperature
Crankshaft position
Camshaft position
Throttle position
Vehicle speed
Power steering pressure
Air conditioning request on or off
EGR valve position
Outputs (Systems controlled):
Ignition control
Fuel control
Idle air control
Fuel pump
EVAP canister purge
Air conditioning
Diagnostics functions
The vehicle with automatic transmission, the
interchange of data between the engine control module
(ECM) and the transmission control module (TCM) is
performed via a CAN-bus system.
The following signals are exchanged via the CAN-bus:
ECM to TCM:
ECM CAN signal status
Engine torque
Coolant temperature
Throttle position
Engine speed
A/C status
CAN valid counter
TCM to ECM:
Ignition timing retard request
Garage shift status
CAN valid counter
6E-52 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Mass Air Flow (MAF) Sensor & Intake Air
Temperature (IAT) Sensor
The MAF sensor is part of the intake air system.
It is fitted between the air cleaner & throttle body and
measure the mass air flowing into the engine.
The MAF sensor uses a hot wire element to determine
the amount of air flowing into the engine. (The wire
temperature reaches to 170 - 300C)
The MAF sensor assembly consist of a MAF senso
r
element and an intake air temperature sensor that are
both exposed to the air flow to be measured.
The MAF sensor element measures the partial air mass
through a measurement duct on the sensor housing.
Using calibration, there is an extrapolation to the entire
mass air flow to the engine.
The IAT sensor is a thermistor. A temperature changes
the resistance value. And it changes voltage. In othe
r
words it measures a temperature value. Low air
temperature produces a high resistance.
The ECM supplies 5 volts signal to the IAT senso
r
through resisters in the ECM and measures the voltage.
The signal voltage will be high when the air temperature
is cold, and it will be low when the air temperature is
hot. Throttle Position Sensor (TPS)
1
2
(1) Throttle Position Sensor (TPS)
(2) Idle Air Control Valve (IACValve)
The TPS is a potentiometer connected to throttle shaf
t
on the throttle body.
The engine control module (ECM) monitors the voltage
on the signal line and calculates throttle position. As the
throttle valve angle is changed when accelerator pedal
moved. The TPS signal also changed at a moved
throttle valve.
As the throttle valve opens, the output
increases so that the output voltage should be high.
The throttle body has a throttle plate to control the
amount of air delivered to the engine. Engine coolant is
directed through a coolant cavity in the throttle body to
warm the throttle valve and to prevent icing.
Charac teristic of IA T Sens or
10 100 1000 10000 100000-3010 50 90130Temper atur e (
)
Resistance (Ω)
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-53
Idle Air Control (IAC) Valve
Step
CoilAB CD
Coil A High
(EC M B13)On On
Coil A Low
(EC M B16)On On
Coil B High
(EC M B14)On On
Coil B Low
(EC M B17)On On
(IAC Valve Close Direction)
(IAC Valve Open Direction)
The idle air control valve (IAC) valve is two directional
and gives 2-way control. It has a stepping moto
r
capable of 256 steps, and also has 2 coils. With power
supply to the coils controlled steps by the engine control
module (ECM), the IAC valve's pintle is moved to adjus
t
idle speed, raising it for fast idle when cold or there is
extra load from the air conditioning or power steering.
By moving the pintle in (to decrease air flow) or out (to
increase air flow), a controlled amount of the air can
move around the throttle plate. If the engine speed is
too low, the engine control module (ECM) will retract the
IAC pintle, resulting in more air moving past the throttle
plate to increase the engine speed.
If the engine speed is too high, the engine control
module (ECM) will extend the IAC pintle, allowing less
air to move past the throttle plate, decreasing the
engine speed.
The IAC pintle valve moves in small step called counts.
During idle, the proper position of the IAC pintle is
calculated by the engine control module (ECM) based
on battery voltage, coolant temperature, engine load,
and engine speed.
If the engine speed drops below a specified value, and
the throttle plate is closed, the engine control module
(ECM) senses a near-stall condition. The engine control
module (ECM) will then calculate a new IAC pintle valve
position to prevent stalls. If the IAC valve is disconnected and reconnected with
the engine running, the idle speed will be wrong. In this
case, the IAC must be reset. The IAC resets when the
key is cycled "On" then "Off". When servicing the IAC, i
t
should only be disconnected or connected with the
ignition "Off".
The position of the IAC pintle valve affects engine start-
up and the idle characteristic of the vehicle.
If the IAC pintle is fully open, too much air will be
allowed into the manifold. This results in high idle
speed, along with possible hard starting and lean
air/fuel ratio.
Camshaft Position (CMP) Sensor
12
(1) Camshaft Position (CMP) Sensor
(2) EGR Valve
With the use of sequential multi-point fuel injection, a
hall element type camshaft position (CMP) is adopted to
provide information to be used in making decisions on
injection timing to each cylinder. It is mounted on the
rear of the left-hand cylinder head and sends signals to
the ECM.
One pulse is generated per two rotations of crankshaft.
6E-54 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Crankshaft Position (CKP) Sensor
The crankshaft position (CKP) sensor, which sends a
signal necessary for deciding on injection timing to the
ECM, is mounted on the right-hand side of the cylinde
r
block.
The crankshaft has a 58 teeth press-fit timing disc, from
which the CKP sensor reads the position of the
crankshaft at all the times. It converts this to an
electrical signal, which it sends to the ECM.
Of the 58 teeth, 57 have a base with of 3°, and are
evenly spaced, but tooth No. 58 is 15° wide at its based
to serve as a timing mark, allowing the sensor to repor
t
the standard crankshaft position.
Using the 58 X signals per rotation and the timing-mark
signal sent by the CKP sensor, the ECM is able to
accurately calculate engine speed and crank position.
Also, the position of each cylinder is precisely known by
the ECM from signals sent by the camshaft position
(CMP) sensor, so the sequential multi-point fuel
injection can be controlled with accuracy.
The 58 X signals are converted by the ECM into a
retangle wave signal. This converted signal is sent from
the ECM terminal B12 to the tachometer and transfe
r
case control module (TCCM) terminal 15 (if 4WD
model).
Engine Coolant Temperature (ECT) Sensor
The ECT sensor is a thermistor. A temperature
changes the resistance value. And it changes voltage.
In other words it measures a temperature value. It is
installed on the coolant stream. Low coolan
t
temperature produces a high resistance.
The ECM supplies 5 volts signal to the ECT senso
r
through resisters in the ECM and measures the voltage.
The signal voltage will be high when the engine
temperature is cold, and it will be low when the engine
temperature is hot.
Characteris tic of ECT Sens or
10 100 1000 10000 100000-3010 50 90130Temperature (
)
Resistance (Ω)
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-55
Vehicle Speed Sensor (VSS)
The VSS is a magnet rotated by the transmission output
shaft. The VSS uses a hall element. It interacts with the
magnetic field treated by the rotating magnet. It outputs
pulse signal. The 12 volts operating supply from the
meter fuse.
Heated Oxygen (O2) Sensor
1
(1) Bank 1 Heated Oxygen Sensor (RH)
1
(1) Bank 2 Heated Oxygen Sensor (LH)
Each oxygen sensor consists of a 4-wire low
temperature activated zirconia oxygen analyzer elemen
t
with heater for operating temperature of 315C, and
there is one mounted on each exhaust pipe.
A constant 450millivolt is supplied by the ECM between
the two supply terminals, and oxygen concentration in
the exhaust gas is reported to the ECM as returned
signal voltage.
The oxygen present in the exhaust gas reacts with the
sensor to produce a voltage output. This voltage should
constantly fluctuate from approximately 100mV to
1000mV and the ECM calculates the pulse width
commanded for the injectors to produce the prope
r
combustion chamber mixture.
Low oxygen sensor output voltage is a lean mixture
which will result in a rich commanded to compensate.
High oxygen sensor output voltage is a rich mixture
which result in a lean commanded to compensate.
When the engine is first started the system is in "Open
Loop" operation. In "Open Loop", the ECM ignores the
signal from the oxygen sensors. When various
conditions (ECT, time from start, engine speed &
oxygen sensor output) are met, the system enters
"Closed Loop" operation. In "Closed Loop", the ECM
calculates the air fuel ratio based on the signal from the
oxygen sensors.
Heated oxygen sensors are used to minimize the
amount of time required for closed loop fuel control to
begin operation and allow accurate catalyst monitoring.
The oxygen sensor heater greatly decreases the
amount of time required for fuel control sensors to
become active.
Oxygen sensor heaters are required by catalyst monito
r
and sensors to maintain a sufficiently high temperature
which allows accurate exhaust oxygen content readings
further away from the engine.
6E-56 3.5L ENGINE DRIVEABILITY AND EMISSIONS
GENERAL DESCRIPTION FOR FUEL
METERING
The fuel metering system starts with the fuel in the fuel
tank. An electric fuel pump, located in the fuel tank,
pumps fuel to the fuel rail through an in-line fuel filter.
The pump is designed to provide fuel at a pressure
above the pressure needed by the injectors.
A fuel pressure regulator in the fuel rail keeps fuel
available to the fuel injectors at a constant pressure.
A return line delivers unused fuel back to the fuel tank.
The basic function of the air/fuel metering system is to
control the air/fuel delivery to the engine. Fuel is
delivered to the engine by individual fuel injectors
mounted in the intake manifold.
The main control sensor is the heated oxygen senso
r
located in the exhaust system. The heated oxygen
sensor reports to the ECM how much oxygen is in the
exhaust gas. The ECM changes the air/fuel ratio to the
engine by controlling the amount of time that fuel
injector is "On".
The best mixture to minimize exhaust emissions is 14.7
parts of air to 1 part of gasoline by weight, which allows
the catalytic converter to operate most efficiently.
Because of the constant measuring and adjusting of the
air/fuel ratio, the fuel injection system is called a "closed
loop" system.
The ECM monitors signals from several sensors in
order to determine the fuel needs of the engine. Fuel is
delivered under one of several conditions called
"mode". All modes are controlled by the ECM.
Acceleration Mode
The ECM provides extra fuel when it detects a rapid
increase in the throttle position and the air flow.
Battery Voltage Correction Mode
When battery voltage is low, the ECM will compensate
for the weak spark by increasing the following:
The amount of fuel delivered.
The idle RPM.
Ignition dwell time.
Clear Flood Mode
Clear a flooded engine by pushing the accelerator pedal
down all the way. The ECM then de-energizes the fuel
injectors. The ECM holds the fuel injectors de-
energized as long as the throttle remains above 80%
and the engine speed is below 800 RPM. If the throttle
position becomes less than 80%, the ECM again begins
to pulse the injectors "ON" and "OFF," allowing fuel into
the cylinders.
Deceleration Mode
The ECM reduces the amount of fuel injected when i
t
detects a decrease in the throttle position and the air
flow. When deceleration is very fast, the ECM may cu
t
off fuel completely for short periods.
Engine Speed/Vehicle Speed/Fuel Disable Mode
The ECM monitors engine speed. It turns off the fuel
injectors when the engine speed increase above 6400
RPM. The fuel injectors are turned back on when
engine speed decreases below 6150 RPM.
Fuel Cutoff Mode
No fuel is delivered by the fuel injectors when the
ignition is "OFF." This prevents engine run-on. In
addition, the ECM suspends fuel delivery if no reference
pulses are detected (engine not running) to preven
t
engine flooding.
Run Mode
The run mode has the following two conditions:
Open loop
Closed loop
When the engine is first started the system is in "open
loop" operation. In "open loop," the ECM ignores the
signal from the heated oxygen sensor (HO2S). I
t
calculates the air/fuel ratio based on inputs from the TP,
ECT, and MAF sensors.
The system remains in "open loop" until the following
conditions are met:
The HO2S has a varying voltage output showing
that it is hot enough to operate properly (this
depends on temperature).
The ECT has reached a specified temperature.
A specific amount of time has elapsed since
starting the engine.
Engine speed has been greater than a specified
RPM since start-up.
The specific values for the above conditions vary with
different engines and are stored in the programmable
read only memory (PROM). When these conditions are
met, the system enters "closed loop" operation. In
"closed loop," the ECM calculates the air/fuel ratio
(injector on-time) based on the signal from the HO2S.
This allows the air/fuel ratio to stay very close to 14.7:1.