1E–4 ENGINE ELECTRICAL
DAEWOO M-150 BL2
3. In both vehicles, apply the parking brake firmly.
Notice: Make sure the cables are not on or near pulleys,
fans, or other parts that will move when the engine
starts, damaging the parts.
4. Shift a manual transaxle to NEUTRAL.
Caution: Do not use cables that have loose or miss-
ing insulation, or injury could result.
5. Clamp one end of the first jumper cable to the positive
terminal on the battery. Make sure it does not touch
any other metal parts. Clamp the other end of the
same cable to the positive terminal on the other bat-
tery. Never connect the other end to the negative ter-
minal of the discharged battery.
Caution: Do not attach the cable directly to the neg-
ative terminal of the discharged battery. Doing so
could cause sparks and possible battery explosion.
6. Clamp one end of the second cable to the negative
terminal of the booster battery. Make the final con-
nection to a solid engine ground, such as the engine
lift bracket, at least 450 millimeters (18 inches) from
the discharged battery.
7. Start the engine of the vehicle with the good battery.
Run the engine at a moderate speed for several min-
utes. Then start the engine of the vehicle which has
the discharged battery.
8. Remove the jumper cables by reversing the above
sequence exactly. Remove the negative cable from
the vehicle with the discharged battery first. While re-
moving each clamp, take care that it does not touch
any other metal while the other end remains at-
tached
.
GENERATOR
The Delco-Remy CS charging system has several mod-
els available, including the ∅114D (A-type) or CS114D
(B-type). The number denotes the outer diameter in
millimeters of the stator lamination.
CS generators are equipped with internal regulators.
The Y connection (A-type) or Delta (B-type) stator, a
rectifier bridge, and a rotor with slip rings and brushes
are electrically similar to earlier generators. A conven-
tional pulley and fan are used. There is no test hole.
Unlike three-wire generators, the ∅114D (A-type) or
CS114D (B-type) may be used with only two connec-
tions: battery positive and an ‘‘L’’ terminal to the charge
indicator lamp.
As with other charging systems, the charge indicator
lamp lights when the ignition switch is turned to ON, and
goes out when the engine is running. If the charge indi-
cator is on with the engine running, a charging system
defect is indicated.
The regulator voltage setting varies with temperature
and limits the system voltage by controlling the rotorfield current. The regulator switches rotor field current
on and off. By varying the on-off time, correct average
field current for proper system voltage control is ob-
tained. At high speeds, the on-time may be 10 percent
and the off-time 90 percent. At low speeds, with high
electrical loads, on-time may be 90 percent and the off-
time 10 percent.
CHARGING SYSTEM
The Delco-Remy CS charging system has several mod-
els available, including the ∅114D (A-type) or CS114D
(B-type). The number denotes the outer diameter in
millimeters of the stator laminations.
CS generators use a new type of regulator that incorpo-
rates a diode trio. The Y connection (A-type) or Delta (B-
type) stator, a rectifier bridge, and a rotor with slip rings
and brushes are electrically similar to earlier generators.
A conventional pulley and fan are used. There is no test
hole.
STARTER
Wound field starter motors have pole pieces, arranged
around the armature, which are energized by wound
field coils.
Enclosed shift lever cranking motors have the shift lever
mechanism and the solenoid plunger enclosed in the
drive housing, protecting them from exposure to dirt, icy
conditions, and splashes.
In the basic circuit, solenoid windings are energized
when the switch is closed. The resulting plunger and
shift lever movement causes the pinion to engage the
engine flywheel ring gear. The solenoid main contacts
close. Cranking then takes place.
When the engine starts, pinion overrun protects the ar-
mature from excessive speed until the switch is opened,
at which time the return spring causes the pinion to dis-
engage. To prevent excessive overrun, the switch
should be released immediately after the engine starts.
STARTING SYSTEM
The engine electrical system includes the battery, the
ignition, the starter, the generator, and all the related wir-
ing. Diagnostic tables will aid in troubleshooting system
faults. When a fault is traced to a particular component,
refer to that component section of the service manual.
The starting system circuit consists of the battery, the
starter motor, the ignition switch, and all the related elec-
trical wiring. All of these components are connected
electrically
.
DISTRIBUTOR
Distributor distributes the high tension voltage induced
from ignition coil, to each spark plug of each cylinder in
1E–12 ENGINE ELECTRICAL
DAEWOO M-150 BL2
BATTERY LOAD TEST
1. Check the battery for obvious damage, such as a
cracked or broken case or cover, which could permit
the loss of electrolyte. If obvious damage is noted, re-
place the battery.
Caution: Do not charge the battery if the hydrometer
is clear or light yellow. Instead, replace the battery. If
the battery feels hot or if violent gassing or spewing
of electrolyte through the vent hole occurs, discontin-
ue charging or reduce the charging rate to avoid inju-
ry.
2. Check the hydrometer. If the green dot is visible, go to
the load test procedure. If the indicator is dark but
green is not visible, charge the battery. For charging a
battery removed from the vehicle, refer to “Charging a
Completely Discharged Battery” in this section.
3. Connect a voltmeter and a battery load tester across
the battery terminals.
4. Apply a 300-ampere load for 15 seconds to remove
any surface charge from the battery.
5. Remove the load.
6. Wait 15 seconds to let the battery recover, and apply
a 270-ampere load.
Important: The battery temperature must be estimated
by touch and by the temperature condition the battery
has been exposed to for the preceding few hours.
7. If the voltage does not drop below the minimum
listed, the battery is good and should be reinstalled. If
the voltage is less than the minimum listed, replace
the battery. Refer to “Battery Specifications” in this
section.
GENERATOR OUTPUT TEST
1. Perform the generator system test. Refer to “Gener-
ator System Check” in this section.
2. Replace the generator if it fails that test. Refer to
“Generator” in the On-Vehicle Service section. If it
passes the test, perform the on-vehicle output
check which follows.
Important: Always check the generator for output be-
fore assuming that a grounded “L” terminal circuit has
damaged the regulator.
3. Attach a digital multimeter (a), an ammeter (b), and
a carbon pile load (c) to the battery (d) and the gen-
erator (e) of the rehicle.
D102E301
Important: Be sure the vehicle battery is fully charged,
and the carbon pile load is turned off.
4. With the ignition switch in the OFF position, check
and record the battery voltage.
5. Remove the harness connector from the generator.
6. Turn the ignition switch to the ON position with the
engine not running. Use a digital multimeter to
check for voltage in the harness connector “L” termi-
nal.
7. The reading should be near the specified battery
voltage of 12 volts. If the voltage is too low, check
the indicator “L” terminal circuits for open and
grounded circuits causing voltage loss. Correct any
open wires, terminal connections, etc., as neces-
sary. Refer to “Charging System” in this section.
8. Attach the generator harness connector.
9. Run the engine at a moderate idle, and measure the
voltage across the battery terminals. The reading
should be above that recorded in Step 4 but less
than 15 volts. If the reading is over 15 volts or below
the previous reading, replace the generator. Refer to
“Generator” in the On-Vehicle Service section.
10. Run the engine at a moderate idle, and measure the
generator amperage output.
11. Turn on the carbon pile, and adjust it to obtain the
maximum amps while maintaining the battery volt-
age above 13 volts.
12. If the reading is within 15 amps of the generator’s
rating noted on the generator, the generator is good.
If not, replace the generator. Refer to “Generator”
in the On-Vehicle Service section.
13. With the generator operating at the maximum out-
put, measure the voltage between the generator
housing and the battery negative terminal. The volt-
age drop should be 0.5 volt or less. If the voltage
drop is more than 0.5 volt, check the ground path
from the generator housing to the negative battery
cable.
14. Check, clean, tighten, and recheck all of the ground
connections.
ENGINE CONTROLS 1F–5
DAEWOO M-150 BL2
fuel is delivered under one of several conditions, called
“modes.’’
Starting Mode
When the ignition is turned ON, the ECM turns the fuel
pump relay on for 2 seconds. The fuel pump then builds
fuel pressure. The ECM also checks the Engine Coolant
Temperature (ECT) sensor and the Throttle Position
(TP) sensor and determines the proper air/fuel ratio for
starting the engine. The ECM controls the amount of
fuel delivered in the starting mode by changing how long
the fuel injector is turned on and off. This is done by
“pulsing’’ the fuel injectors for very short times.
Run Mode
The run mode has two conditions called “open loop’’ and
“closed loop.’’
Open Loop
When the engine is first started and it is above 400 rpm,
the system goes into “open loop’’ operation. In “open
loop,’’ the ECM ignores the signal from the O2S and cal-
culates the air/fuel ratio based on inputs from the ECT
sensor and the MAP sensor. The ECM stays in ”open
loop” until the following conditions are met:
The O2S has a varying voltage output, showing that it
is hot enough to operate properly.
The ECT sensor is above a specified temperature.
A specific amount of time has elapsed after starting
the engine.
Closed Loop
The specific values for the above conditions vary with
different engines and are stored in the Electronically
Erasable Programmable Read-Only Memory (EE-
PROM). When these conditions are met, the system
goes into “closed loop” operation. In “closed loop,” the
ECM calculates the air/fuel ratio (fuel injector on-time)
based on the signals from the oxygen sensors. This al-
lows the air/fuel ratio to stay very close to 14.7 to 1.
Acceleration Mode
The ECM responds to rapid changes in throttle position
and airflow and provides extra fuel.
Deceleration Mode
The ECM responds to changes in throttle position and
airflow and reduces the amount of fuel. When decelera-
tion is very fast, the ECM can cut off fuel completely for
short periods of time.
Battery Voltage Correction Mode
When battery voltage is low, the ECM can compensate
for a weak spark delivered by the ignition module by us-
ing the following methods:
Increasing the fuel injector pulse width.
Increasing the idle speed rpm.
Increasing the ignition dwell time.
Fuel Cut-Off Mode
No fuel is delivered by the fuel injectors when the ignition
is off. This prevents dieseling or engine run-on. Also, the
fuel is not delivered if there are no reference pulses re-
ceived from the CKP sensor. This prevents flooding.
EVAPORATIVE EMISSION CONTROL
SYSTEM OPERATION
The basic Evaporative Emission (EVAP) control system
used is the charcoal canister storage method. This
method transfers fuel vapor from the fuel tank to an acti-
vated carbon (charcoal) storage canister which holds
the vapors when the vehicle is not operating. When the
engine is running, the fuel vapor is purged from the car-
bon element by intake airflow and consumed in the nor-
mal combustion process.
Gasoline vapors from the fuel tank flow into the tube la-
beled TANK. These vapors are absorbed into the car-
bon. The canister is purged by Engine Control Module
(ECM) when the engine has been running for a specified
amount of time. Air is drawn into the canister and mixed
with the vapor. This mixture is then drawn into the intake
manifold.
The ECM supplies a ground to energize the controlled
charcoal canister purge solenoid valve. This valve is
Pulse Width Modulated (PWM) or turned on and off sev-
eral times a second. The controlled charcoal canister
purge PWM duty cycle varies according to operating
conditions determined by mass airflow, fuel trim, and in-
take air temperature.
Poor idle, stalling, and poor driveability can be caused
by the following conditions:
An inoperative controlled canister purge valve.
A damaged canister.
Hoses that are split, cracked, or not connected to the
proper tubes.
CONTROLLED CHARCOAL
CANISTER
The controlled charcoal canister is an emission control
device containing activated charcoal granules. The con-
trolled charcoal canister is used to store fuel vapors from
the fuel tank. Once certain conditions are met, the En-
gine Control Module (ECM) activates the controlled
charcoal canister purge solenoid, allowing the fuel va-
pors to be drawn into the engine cylinders and burned.
POSITIVE CRANKCASE
VENTILATION CONTROL SYSTEM
OPERATION
A Positive Crankcase Ventilation (PCV) control system
is used to provide complete use of the crankcase va-
ENGINE CONTROLS 1F–9
DAEWOO M-150 BL2
appropriate wiring diagram. Refer to “ECM Wiring Dia-
grams” in this Section.
9591
Terminal 49GroundOpen
STRATEGY-BASED DIAGNOSTICS
Strategy-Based Diagnostics
The strategy-based diagnostic is a uniform approach to
repair all Electrical/Electronic (E/E) systems. The diag-
nostic flow can always be used to resolve an E/E system
problem and is a starting point when repairs are neces-
sary. The following steps will instruct the technician on
how to proceed with a diagnosis:
Verify the customer complaint. To verify the customer
complaint, the technician should know the normal op-
eration of the system.
Perform preliminary checks as follows:
Conduct a thorough visual inspection.
Review the service history.
Detect unusual sounds or odors.
Gather Diagnostic Trouble Code (DTC) information to
achieve an effective repair.
Check bulletins and other service information. This
includes videos, newsletters, etc.
Refer to service information (manual) system
check(s).
Refer to service diagnostics.
No Trouble Found
This condition exists when the vehicle is found to oper-
ate normally. The condition described by the customer
may be normal. Verify the customer complaint against
another vehicle that is operating normally. The condition
may be intermittent. Verify the complaint under the con-
ditions described by the customer before releasing the
vehicle.
Re-examine the complaints.
When the complaints cannot be successfully found or
isolated, a re-evaluation is necessary. The complaint
should be re-verified and could be intermittent as de-
fined in “intermittents,” or could be normal.
After isolating the cause, the repairs should be made.
Validate for proper operation and verify that the symp-
tom has been corrected. This may involve road testing
or other methods to verify that the complaint has re-
solved under following conditions:
Conditions noted by the customer.
If a DTC was diagnosed, verify the repair be duplicat-
ing conditions present when the DTC was set as
noted in Failure Records or Freeze Frame data.
Verifying Vehicle Repair
Verification of the vehicle repair will be more compre-
hensive for vehicles with Euro On-Board Diagnostic
(EOBD) system diagnostics. Following a repair, the
technician should perform the following steps:
Important: Follow the steps below when you verify re-
pairs on EOBD systems. Failure to follow these steps
could result in unnecessary repairs.
Review and record the Failure Records and the
Freeze Frame data for the DTC which has been diag-
nosed (Freeze Fame data will only be stored for an A,
B and E type diagnostic and only if the Malfunction
Indicator Lamp has been requested).
Clear the DTC(s).
Operate the vehicle within conditions noted in the
Failure Records and Freeze Frame data.
Monitor the DTC status information for the specific
DTC which has been diagnosed until the diagnostic
test associated with that DTC runs.
EOBD SERVICEABILITY ISSUES
Based on the knowledge gained from Euro On-Board
Diagnostic (OBD) experience in the 1994 and 1995
model years in United Status, this list of non-vehicle
faults that could affect the performance of the Euro On-
Board Diagnostic (EOBD) system has been compiled.
These non-vehicle faults vary from environmental condi-
tions to the quality of fuel used. With the introduction of
EOBD across the entire passenger car, illumination of
the Malfunction Indicator Lamp (MIL) due to a non-ve-
hicle fault could lead to misdiagnosis of the vehicle, in-
creased warranty expense and customer
dissatisfaction. The following list of non-vehicle faults
does not include every possible fault and may not apply
equally to all product lines.
Fuel Quality
Fuel quality is not a new issue for the automotive indus-
try, but its potential for turning on the MIL with EOBD
systems is new.
Fuel additives such as “dry gas” and “octane enhancers”
may affect the performance of the fuel. If this results in
an incomplete combustion or a partial burn, it will set
Diagnostic Trouble Code (DTC) P0300. The Reed Vapor
Pressure of the fuel can also create problems in the fuel
system, especially during the spring and fall months
when severe ambient temperature swings occur. A high
Reed Vapor Pressure could show up as a Fuel Trim
DTC due to excessive canister loading.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the major fuel
companies advertise that using “premium” gasoline will
improve the performance of your vehicle. Most premium
1F–10 ENGINE CONTROLS
DAEWOO M-150 BL2
fuels use alcohol to increase the octane rating of the
fuel. Although alcohol-enhanced fuels may raise the oc-
tane rating, the fuel’s ability to turn into vapor in cold
temperatures deteriorates. This may affect the starting
ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
The EOBD system has been calibrated to run with Origi-
nal Equipment Manufacturer (OEM) parts. Something
as simple as a high performance-exhaust system that
affects exhaust system back pressure could potentially
interfere with the operation of the Electric Exhaust Gas
Recirculation (EEGR) valve and thereby turn on the
MIL. Small leaks in the exhaust system near the heated
oxygen sensor (HO2S) can also cause the MIL to turn
on.
Aftermarket electronics, such as cellular phones, ster-
eos, and anti-theft devices, may radiate Electromagnet-
ic Interference (EMI) into the control system if they are
improperly installed. This may cause a false sensor
reading and turn on the MIL.
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition sys-
tem. If the ignition system is rain-soaked, it can tempo-
rarily cause engine misfire and turn on the MIL.
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 2 to 3 miles of driving. This type of opera-
tion contributes to the fuel fouling of the spark plugs and
will turn on the MIL with a set DTC P0300.
Poor Vehicle Maintenance
The sensitivity of the EOBD will cause the MIL to turn on
if the vehicle is not maintained properly. Restricted air fil-
ters, fuel filters, and crankcase deposits due to lack of oil
changes or improper oil viscosity can trigger actual ve-
hicle faults that were not previously monitored prior to
EOBD. Poor vehicle maintenance can not be classified
as a “non-vehicle fault,” but with the sensitivity of the
EOBD, vehicle maintenance schedules must be more
closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an exces-
sive amount of mud on the wheels, can have the same
effect on crankshaft speed as misfire and, therefore,
may set DTC P0300.
Related System Faults
Many of the EOBD system diagnostics will not run if the
Engine Control Module (ECM) detects a fault on a re-
lated system or component. One example would be thatif the ECM detected a Misfire fault, the diagnostics on
the catalytic converter would be suspended until the
Misfire fault was repaired. If the Misfire fault is severe
enough, the catalytic converter can be damaged due to
overheating and will never set a Catalyst DTC until the
Misfire fault is repaired and the Catalyst diagnostic is al-
lowed to run to completion. If this happens, the custom-
er may have to make two trips to the dealership in order
to repair the vehicle.
SERIAL DATA COMMUNICATIONS
Keyword 2000 Serial Data
Communications
Government regulations require that all vehicle
manufacturers establish a common communication sys-
tem. This vehicle utilizes the “Keyword 2000” commu-
nication system. Each bit of information can have one of
two lengths: long or short. This allows vehicle wiring to
be reduced by transmitting and receiving multiple sig-
nals over a single wire. The messages carried on Key-
word 2000 data streams are also prioritized. If two
messages attempt to establish communications on the
data line at the same time, only the message with higher
priority will continue. The device with the lower priority
message must wait. The most significant result of this
regulation is that it provides scan tool manufacturers
with the capability to access data from any make or
model vehicle that is sold.
The data displayed on the other scan tool will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual val-
ue. On this vehicle, the scan tool displays the actual val-
ues for vehicle parameters. It will not be necessary to
perform any conversions from coded values to actual
values.
EURO ON-BOARD DIAGNOSTIC
(EOBD)
Euro On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the diag-
nostic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not cur-
rently active.
When a diagnostic test reports a fail result, the diagnos-
tic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
1F–14 ENGINE CONTROLS
DAEWOO M-150 BL2
termittent fault will also be erased from memory. If the
fault that caused the DTC to be stored into memory has
been corrected, the Diagnostic Executive will begin to
count the ‘‘warm-up” cycles with no further faults de-
tected, the DTC will automatically be cleared from the
Engine Control Module (ECM) memory.
To clear DTCs, use the diagnostic scan tool.
It can’t cleared DTCs without the diagnostic scan tool.
So you must use the diagnostic scan tool.
Notice: To prevent system damage, the ignition key
must be OFF when disconnecting or reconnecting bat-
tery power.
The power source to the control module. Examples:
fuse, pigtail at battery ECM connectors, etc.
The negative battery cable. (Disconnecting the nega-
tive battery cable will result in the loss of other Euro
On-Board memory data, such as preset radio tuning.)
DTC Modes
On Euro On-Board Diagnostic (EOBD) passenger cars
there are five options available in the scan tool DTC
mode to display the enhanced information available. A
description of the new modes, DTC Info and Specific
DTC, follows. After selecting DTC, the following menu
appears:
DTC Info.
Specific DTC.
Freeze Frame.
Fail Records (not all applications).
Clear Info.
The following is a brief description of each of the sub
menus in DTC Info and Specific DTC. The order in
which they appear here is alphabetical and not neces-
sarily the way they will appear on the scan tool.
DTC Information Mode
Use the DTC info mode to search for a specific type of
stored DTC information. There are seven choices. The
service manual may instruct the technician to test for
DTCs in a certain manner. Always follow published ser-
vice procedures.
To get a complete description of any status, press the
‘‘Enter” key before pressing the desired F-key. For ex-
ample, pressing ‘‘Enter” then an F-key will display a defi-
nition of the abbreviated scan tool status.
DTC Status
This selection will display any DTCs that have not run
during the current ignition cycle or have reported a test
failure during this ignition up to a maximum of 33 DTCs.
DTC tests which run and pass will cause that DTC num-
ber to be removed from the scan tool screen.
Fail This Ign. (Fail This Ignition)
This selection will display all DTCs that have failed dur-
ing the present ignition cycle.
History
This selection will display only DTCs that are stored in
the ECM’s history memory. It will not display Type B
DTCs that have not requested the Malfunction Indicator
Lamp (MIL). It will display all type A, B and E DTCs that
have requested the MIL and have failed within the last
40 warm-up cycles. In addition, it will display all type C
and type D DTCs that have failed within the last 40
warm-up cycles.
Last Test Fail
This selection will display only DTCs that have failed the
last time the test ran. The last test may have run during
a previous ignition cycle if a type A or type B DTC is dis-
played. For type C and type D DTCs, the last failure
must have occurred during the current ignition cycle to
appear as Last Test Fail.
MIL Request
This selection will display only DTCs that are requesting
the MIL. Type C and type D DTCs cannot be displayed
using this option. This selection will report type B and E
DTCs only after the MIL has been requested.
Not Run SCC (Not Run Since Code Clear)
This option will display up to 33 DTCs that have not run
since the DTCs were last cleared. Since the displayed
DTCs have not run, their condition (passing or failing) is
unknown.
Test Fail SCC (Test Failed Since Code
Clear)
This selection will display all active and history DTCs
that have reported a test failure since the last time DTCs
were cleared. DTCs that last failed more than 40 warm-
up cycles before this option is selected will not be dis-
played.
Specific DTC Mode
This mode is used to check the status of individual diag-
nostic tests by DTC number. This selection can be ac-
cessed if a DTC has passed, failed or both. Many EOBD
DTC mode descriptions are possible because of the ex-
tensive amount of information that the diagnostic execu-
tive monitors regarding each test. Some of the many
possible descriptions follow with a brief explanation.
The “F2” key is used, in this mode, to display a descrip-
tion of the DTC. The “Ye s” and “No” keys may also be
used to display more DTC status information. This
selection will only allow entry of DTC numbers that are
supported by the vehicle being tested. If an attempt is,
ENGINE CONTROLS 1F–15
DAEWOO M-150 BL2
made to enter DTC numbers for tests which the diag-
nostic executive does not recognize, the requested in-
formation will not be displayed correctly and the scan
tool may display an error message. The same applies to
using the DTC trigger option in the Snapshot mode. If an
invalid DTC is entered, the scan tool will not trigger.
Failed Last Test
This message display indicates that the last diagnostic
test failed for the selected DTC. For type A, B and E
DTCs, this message will be displayed during subse-
quent ignition cycles until the test passes or DTCs are
cleared. For type C and type D DTCs, this message will
clear when the ignition is cycled.
Failed Since Clear
This message display indicates that the DTC has failed
at least once within the last 40 warm-up cycles since the
last time DTCs were cleared.
Failed This Ig. (Failed This Ignition)
This message display indicates that the diagnostic test
has failed at least once during the current ignition cycle.
This message will clear when DTCs are cleared or the
ignition is cycled.
History DTC
This message display indicates that the DTC has been
stored in memory as a valid fault. A DTC displayed as a
History fault may not mean that the fault is no longer
present. The history description means that all the con-
ditions necessary for reporting a fault have been met
(maybe even currently), and the information was stored
in the control module memory.
MIL Requested
This message display indicates that the DTC is currently
causing the MIL to be turned ON. Remember that only
type A B and E DTCs can request the MIL. The MIL re-
quest cannot be used to determine if the DTC fault con-
ditions are currently being experienced. This is because
the diagnostic executive will require up to three trips dur-
ing which the diagnostic test passes to turn OFF the
MIL.
Not Run Since CI (Not Run Since Cleared)
This message display indicates that the selected diag-
nostic test has not run since the last time DTCs were
cleared. Therefore, the diagnostic test status (passing
or failing) is unknown. After DTCs are cleared, this mes-
sage will continue to be displayed until the diagnostic
test runs.
Not Run This Ig. (Not Run This Ignition)
This message display indicates that the selected diag-
nostic test has not run during this ignition cycle.
Test Ran and Passed
This message display indicates that the selected diag-
nostic test has done the following:Passed the last test.
Run and passed during this ignition cycle.
Run and passed since DTCs were last cleared.
If the indicated status of the vehicle is “Test Ran and
Passed” after a repair verification, the vehicle is ready to
be released to the customer.
If the indicated status of the vehicle is “Failed This Igni-
tion” after a repair verification, then the repair is incom-
plete and further diagnosis is required.
Prior to repairing a vehicle, status information can be
used to evaluate the state of the diagnostic test, and to
help identify an intermittent problem. The technician can
conclude that although the MIL is illuminated, the fault
condition that caused the code to set is not present. An
intermittent condition must be the cause.
PRIMARY SYSTEM-BASED
DIAGNOSTICS
There are primary system-based diagnostics which
evaluate the system operation and its effect on vehicle
emissions. The primary system-based diagnostics are
listed below with a brief description of the diagnostic
function:
Oxygen Sensor Diagnosis
The fuel control oxygen sensor (O2S) is diagnosed for
the following conditions:
Few switch count (rich to lean or lean to rich).
Slow response (average transient time lean to rich or
rich to lean).
Response time ratio (ratio of average transient time
rich(lean) to lean(rich)).
Inactive signal (output steady at bias voltage approxi-
mately 450 mV).
Signal fixed high.
Signal fixed low.
The catalyst monitor heated oxygen sensor (HO2S) is
diagnosed for the following conditions:
Heater performance (current during IGN on).
Signal fixed low during steady state conditions or
power enrichment (hard acceleration when a rich mix-
ture should be indicated).
Signal fixed high during steady state conditions or de-
celeration mode (deceleration when a lean mixture
should be indicated).
Inactive sensor (output steady at approx. 438 mV).
If the O2S pigtail wiring, connector or terminal are dam-
aged, the entire O2S assembly must be replaced. Do
not attempt to repair the wiring, connector or terminals.
In order for the sensor to function properly, it must have
clean reference air provided to it. This clean air refer-
ence is obtained by way of the O2S wire(s). Any attempt
to repair the wires, connector or terminals could result in
1F–296 ENGINE CONTROLS
DAEWOO M-150 BL2
POOR FUEL ECONOMY
Definition: Fuel economy, as measured by an actual
road test, is noticeably lower than expected. Also, fuel
economy is noticeably lower than it was on this vehicle
at one time, as previously shown by an actual road test.
Important: Driving habits affect fuel economy. Check
the owner’s driving habits by asking the following ques-
tions:1. Is the A/C system (i.e. defroster mode) turned on all
the time?
2. Are the tires at the correct air pressure?
3. Have excessively heavy loads been carried?
4. Does the driver accelerate too much and too often?
Suggest the driver read the section in the owner’s
manual about fuel economy.
StepActionValue(s)YesNo
1
Were the Important Preliminary Checks performed?
–
Go to Step 2
Go to
“Important
Preliminary
Checks”
2
1. Inspect the air filter for excessive contamination.
2. Inspect for fuel system leaks.
Are all needed checks complete?
–
Go to Step 3
–
3
1. Inspect the spark plugs for excessive wear,
insulation cracks, improper gap, or heavy
deposits.
2. Replace any faulty spark plugs.
3. Inspect the ignition wires for cracking, hardness,
and proper connections.
Are all needed checks and repairs complete?
–
Go to Step 4
–
4
1. Inspect the engine coolant level.
2. Check the thermostat for being always open or for
an incorrect heat range.
3. Replace the thermostat as needed.
Are all needed checks and repairs complete?
–
Go to Step 4
–
5
1. Check the transaxle shift pattern. Ensure all
transaxle gears are functioning.
2. Check for proper calibration of the speedometer.
3. Check the brakes for dragging.
4. Check the cylinder compression.
5. Repair, replace, or adjust any components as
needed.
Are all checks and needed repairs complete?
–
System OK
–