6E±35
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Inspect all wires in the engine compartment for proper
connections, burned or chafed spots, pinched wires,
contact with sharp edges or contact with hot exhaust
manifolds or pipes.
Basic Knowledge of Tools Required
NOTE: Lack of basic knowledge of this powertrain when
performing diagnostic procedures could result in an
incorrect diagnosis or damage to powertrain
components. Do not attempt to diagnose a powertrain
problem without this basic knowledge.
A basic understanding of hand tools is necessary to effec-
tively use this section of the Service Manual.
Serial Data Communications
Class 2 Serial Data Communications
Government regulations require that all vehicle
manufacturers establish a common communication
system. This vehicle utilizes the ªClass 2º communication
system. Each bit of information can have one of two
lengths: long or short. This allows vehicle wiring to be
reduced by transmitting and receiving multiple signals
over a single wire. The messages carried on Class 2 data
streams are also prioritized. If two messages attempt to
establish communications on the data line at the same
time, only the message with higher priority will continue.
The device with the lower priority message must wait.
The most significant result of this regulation is that it
provides Scan tool manufacturers with the capability to
access data from any make or model vehicle that is sold.
The data displayed on other Scan tools will appear the
same, with some exceptions. Some Scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual value.
On this vehicle the Scan tool displays the actual values for
vehicle parameters. It will not be necessary to perform
any conversions from coded values to actual values.
On-Board Diagnostic (OBD II)
On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which is
a pass or fail reported to the diagnostic executive. When
a diagnostic test reports a pass result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not
currently active.
When a diagnostic test reports a fail result, the diagnostic
executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.Remember, a fuel trim DTC may be triggered by a list of
vehicle faults. Make use of all information available (other
DTCs stored, rich or lean condition, etc.) when
diagnosing a fuel trim fault.
Comprehensive Component Monitor
Diagnostic Operation
Comprehensive component monitoring diagnostics are
required to monitor emissions-related input and output
powertrain components. The
CARB OBD II
Comprehensive Component Monitoring List Of
Components Intended To illuminate MIL
is a list of
components, features or functions that could fall under
this requirement.
Input Components:
Input components are monitored for circuit continuity and
out-of-range values. This includes rationality checking.
Rationality checking refers to indicating a fault when the
signal from a sensor does not seem reasonable, i.e.
Throttle Position (TP) sensor that indicates high throttle
position at low engine loads or MAP voltage. Input
components may include, but are not limited to the
following sensors:
Vehicle Speed Sensor (VSS)
Crankshaft Position (CKP) sensor
Throttle Position (TP) sensor
Engine Coolant Temperature (ECT) sensor
Manifold Absolute Pressure (MAP) sensor
Mass Air Flow (MAF) sensor
In addition to the circuit continuity and rationality check,
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel
control.
Output Components:
Output components are diagnosed for proper response to
control module commands. Components where
functional monitoring is not feasible will be monitored for
circuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are not
limited to, the following circuits:
Control module controlled EVAP Canister Purge
Valve
Electronic Transmission controls
A/C relays
VSS output
MIL control
Cruise control inhibit
Refer to PCM and Sensors in General Descriptions.
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors a
vehicle system or component. Conversely, an active test,
actually takes some sort of action when performing
diagnostic functions, often in response to a failed passive
test. For example, the EGR diagnostic active test will
force the EGR valve open during closed throttle decel
and/or force the EGR valve closed during a steady state.
Either action should result in a change in manifold
pressure.
6E±76
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Exhaust Gas Recirculation (EGR)
Diagnosis
An EGR flow check diagnosis of the linear EGR system is
covered by DTC P0401. Pintle position error diagnosis is
covered by DTC P0402, P0404, P1404, P0405, P0406. If
EGR diagnostic trouble codes P0401 and/or P0402,
P0404, P1404, P0405, P0406 are encountered, refer to
the DTC charts.
Engine Tech 2 Data Definitions and
Ranges
A/C CLUTCH ± Tech 2 Displays ON or OFF ±
Indicates whether the PCM has commanded the A/C
clutch ON. Used in A/C system diagnostic.
A/C REQUEST Ð Tech 2 Displays YES or NO Ð
Indicates the state of the A/C request input circuit from the
HVAC controls. The PCM uses the A/C request signal to
determine whether A/C compressor operation is being
requested.
AIR/FUEL RATIO Ð Tech 2 Range 0.0-25.5 Ð
Air/fuel ratio indicates the PCM commanded value. In
closed loop, the air/fuel ratio should normally be
displayed around ª14.2-14.7º. A lower air/fuel ratio
indicates a richer commanded mixture, which may be
seen during power enrichment or TWC protection modes.
A higher air/fuel ratio indicates a leaner commanded
mixture. This can be seen during deceleration fuel mode.
AP1 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª13%º at idle and ª85-89%º at wide open throttle.
AP2 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª85-89%º at idle and ª11-15%º at wide open throttle.
AP3 ÐTech 2 Range 0%-100% Ð
AP (accelerator pedal) angle is computed by the PCM
from the AP sensor voltage. AP angle should display
ª85-89%º at idle and ª32-36%º at wide open throttle.
BAROMETRIC PRESSURE Ð Tech 2 Range 10-105
kPa/0.00-5.00 Volts Ð
The barometric pressure reading is determined from the
MAP sensor signal monitored during key up and wide
open throttle (WOT) conditions. The barometric pressure
is used to compensate for altitude differences and is
normally displayed around ª61-104º depending on
altitude and barometric pressure.
CHECK TRANS LAMP Ð AUTO TRANSMISSION Ð
Indicates the need to check for a DTC with the Tech 2
when the lamp is flashing 0.2 seconds ON and 0.2
seconds OFF.
DESIRED EGR POS. Ð Tech 2 Range 0%-100% Ð
Represents the EGR pintle position that the PCM is
commanding.
DESIRED IDLE Ð Tech 2 Range 0-3187 RPM Ð
The idle speed that the PCM is commanding. The PCM
will compensate for various engine loads based on engine
coolant temperature, to keep the engine at the desired
speed.ECT Ð (Engine Coolant Temperature) Tech 2
Range ±40C to 151C (±40F to 304F) Ð
The engine coolant temperature (ECT) is mounted in the
coolant stream and sends engine temperature
information to the PCM. The PCM applies 5 volts to the
ECT sensor circuit. The sensor is a thermistor which
changes internal resistance as temperature changes.
When the sensor is cold (high resistance), the PCM
monitors a high signal voltage and interprets that as a cold
engine. As the sensor warms (decreasing resistance),
the voltage signal will decrease and the PCM will interpret
the lower voltage as a warm engine.
EGR DUTY CYCLE Ð Tech 2 Range 0%-100% Ð
Represents the EGR valve driver PWM signal from the
PCM. A duty cycle of 0% indicates that no EGR flow is
being commanded; a 100% duty cycle indicates
maximum EGR flow commanded.
EGR FEEDBACK Ð Tech 2 Range 0.00-5.00 Volts Ð
Indicates the EGR pintle position sensor signal voltage
being monitored by the PCM. A low voltage indicates a
fully extended pintle (closed valve); a voltage near 5 volts
indicates a retracted pintle (open valve).
ENGINE LOAD Ð Tech 2 Range 0%-100% Ð
Engine load is calculated by the PCM from engine speed
and MAF sensor readings. Engine load should increase
with an increase in RPM or air flow.
ENGINE RUN TIME Ð Tech 2 Range
00:00:00-99:99:99 Hrs:Min:Sec Ð
Indicates the time elapsed since the engine was started.
If the engine is stopped, engine run time will be reset to
00:00:00.
ENGINE SPEED Ð Range 0-9999 RPM Ð
Engine speed is computed by the PCM from the 58X
reference input. It should remain close to desired idle
under various engine loads with engine idling.
EVAP PURGE PWM Ð Tech 2 Range 0%-100% Ð
Represents the PCM commanded PWM duty cycle of the
EVAP purge solenoid valve. ª0%º displayed indicates no
purge; ª100%º displayed indicates full purge.
FUEL PUMP Ð Tech 2 Displays ON or OFF Ð
Indicates the PCM commanded state of the fuel pump
relay driver circuit.
HO2S BANK 1, SEN. 1
Ð Tech 2 Range 0-1132 mV Ð
Represents the fuel control exhaust oxygen sensor
output voltage. Should fluctuate constantly within a range
between 10 mV (lean exhaust) and 1000 mV (rich
exhaust) while operating in closed loop.
HO2S BANK 1, SEN. 2
Ð Tech 2 Range 0-1000mV Ð
Monitors the exhaust oxygen sensor output voltage. The
PCM monitors the operating efficiency of catalytic
converter by comparing the output voltages of sensor 1
and sensor 2 in this bank. If the catalytic converter is
operating efficiently, the output voltage of sensor 1 will
give a greater fluctuation than that of sensor 2. If the
PCM detects an abnormal level of voltage fluctuation
from sensor 2, a DTC P0420 will be set, indicating that the
catalytic converter for this bank is no longer operating
efficiently.
6E±77
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
HO2S BANK2, SEN. 1 ÐTech 2 Range 0-1132 mVÐ
Represents the fuel control exhaust oxygen sensor
output voltage. Should fluctuate constantly within a range
between 10mV (lean exhaust) and 1000 mV (rich
exhaust) while operating in closed loop.
HO2S BANK 2, SEN. 2ÐTech 2 Range 0-1000 mVÐ
Monitors the exhaust oxygen sensor output voltage. The
PCM monitors the operating efficiency of catalytic
converter by comparing the output voltages of sensor 1
and sensor 2 in this bank. If the catalytic converter is
operating efficiently, the output voltage of sensor 1 will
have a greater fluctuation than that of sensor 2. If the
PCM detects an abnormal level of voltage fluctuation
from sensor 2, a DTC P0430 will be set, indicating that the
catalytic converter for this bank is no longer operating
efficiently.
HO2S BANK 1, SEN. 1ÐTech 2 Displays NOT
READY or READYÐ
Indicates the status of the exhaust oxygen sensor. The
Tech 2 will indicate that the exhaust oxygen sensor is
ready when the PCM detects a fluctuating HO2S voltage
sufficient to allow closed loop operation. This will not
occur unless the exhaust oxygen sensor is warmed up.
HO2S BANK 2, SEN. 1 Ð Tech 2 Displays NOT
READY or READY Ð
Indicates the status of the exhaust oxygen sensor. The
Tech 2 will indicate that the exhaust oxygen sensor is
ready when the PCM detects a fluctuating HO2S voltage
sufficient to allow closed loop operation. This will not
occur unless the exhaust oxygen sensor is warmed up.
HO2S WARM UP TIME BANK 1, SEN. 1/BANK 1,
SEN 2/BANK 2 SEN. 1/BANK 2 SEN. 2 Ð Tech 2
Range 00:00:00-99:99:99 HRS:MIN:SEC Ð
Indicates warm-up time for each HO2S. The HO2S
warm-up time is used for the HO2S heater test. The PCM
will run the heater test only after a cold start (determined
by engine coolant and intake air temperature at the time
of start-up) and only once during an ignition cycle. When
the engine is started the PCM will monitor the HO2S
voltage. When the HO2S voltage indicates a sufficiently
active sensor, the PCM looks at how much time has
elapsed since start-up. If the PCM determines that tool
much time was required for the HO2S to become active,
a DTC will set. If the engine was warm when started,
HO2S warm-up will the display ª00:00:00º.
IAT (INTAKE AIR TEMPERATURE) Ð Tech 2 Range
±40C to 151C (±40F to 304F) Ð
The PCM converts the resistance of the intake air
temperature sensor to degrees. Intake air temperature
(IAT) is used by the PCM to adjust fuel delivery and spark
timing according to incoming air density.
IGNITION 1 Ð Tech 2 Range 0-25.5 Volts Ð
This represents the system voltage measured by the
PCM at its ignition feed.INJ. PULSE BANK 1/INJ. PULSE BANK 2 Ð Tech 2
Range 0-1000 msec. Ð
Indicates the amount of time the PCM is commanding
each injector ªONº during each engine cycle. A longer
injector pulse width will cause more fuel to be delivered.
Injector pulse width should increase with increased
engine load.
LONG TERM FUEL TRIM BANK 1/BANK 2 Ð
The long term fuel trim is derived from the short term fuel
trim values and represents a long term correction of fuel
delivery for the bank in question. A value of 0% indicates
that fuel delivery requires no compensation to maintain
the PCM commanded air/fuel ratio. A negative value
significantly below 0% indicates that the fuel system is
rich and fuel delivery is being reduced (decreased injector
pulse width). A positive value significantly greater than
0% indicates that a lean condition exists and the PCM is
compensating by adding fuel (increased injector pulse
width). Because long term fuel trim tends to follow short
term fuel trim, a value in the negative range due to
canister purge at idle should not be considered unusual.
Fuel trim values at maximum authority may indicate an
excessively rich or lean system.
Fuel System STATUS Ð Tech 2 Displays OPEN or
CLOSED Ð
ªCLOSEDº indicates that the PCM is controlling fuel
delivery according to oxygen sensor voltage. In ªOPENº
the PCM ignores the oxygen sensor voltage and bases
the amount of fuel to be delivered on TP sensor, engine
coolant, and MAF sensor inputs only.
MAF Ð Tech 2 Range 0.0-512 gm/s Ð
MAF (mass air flow) is the MAF input frequency
converted to grams of air per second. This indicates the
amount of air entering the engine.
MAP
Ð Tech 2 Range 10-105 kPa (0.00-4.97 Volts) Ð
The manifold absolute pressure (MAP) sensor measures
the change in the intake manifold pressure from engine
load, EGR flow, and speed changes. As intake manifold
pressure increases, intake vacuum decreases, resulting
in a higher MAP sensor voltage and kPa reading. The
MAP sensor signal is used to monitor intake manifold
pressure changes during the EGR flow test, to update the
BARO reading, and as an enabling factor for several of
the diagnostics.
MIL Ð Tech 2 Displays ON or OFF Ð
Indicates the PCM commanded state of the malfunction
indicator lamp.
MISFIRE CUR. CYL. #1 /#2 /#3 /#4 / #5 / #6 Ð Tech 2
Range 0-255 Counts Ð
The misfire current counters increase at a rate according
to the number of the possible misfires being detected on
each cylinder. The counters may normally display some
activity, but the activity should be nearly equal for all the
cylinders.
6E±132
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Poor connection at PCM-Inspect harness connectors
for backed out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal to wire connection.
Damaged harness- Inspect the wiring harness for
damage. If the harness appears to be OK, observe the
Mass Air Flow (MAF) display on the Tech 2 while
moving connectors and wiring harnesses related to the
sensor.
Plugged intake air duct or filter element
A wide±open throttle acceleration from a stop should
cause the mass air flow displayed on a Tech 2 toincrease from about 3±6 g/s at idle to 100 g/s or greater
at the time of the 1±2 shift. If not, check for a restriction.
A change in the display will indicate the location of
the fault.
If DTC P0101 cannot be duplicated, the information
included in the Failure Records data can be useful in
determined vehicle mileage since the DTC was last
set.
If it is determined that the DTC occurs intermittently,
performing the DTC P001 Diagnostic Chart may
isolate the cause of the fault.
DTC P0101 ± MAF System Performance
StepActionValue(s)Ye sNo
1Was the ªOn-Board Diagnostic (OBD) System Checkº
performed?
ÐGo to Step 2
Go to OBD
System
Check
21. Ignition ªOFFº.
2. Disconnect the Mass Air Flow (MAF) Sensor
harness connector from the MAF Sensor.
3. Place an unpowered test lamp between the 12 volt
signal circuit and the ground circuit, both at the MAF
Sensor connector.
4. Ignition ªONº, EngineªOFFº.
Did the test lamp illuminate?
ÐGo to Step 6Go to Step 3
31. Ignition ªONº, Engine ªOFFº.
2. Using a Digital Voltmeter (DVM), check the 12 volt
signal circuit for the correct voltage.
Did the DVM indicate a value within the following
range?
11.5 to 12.5
Volt
Go to Step 5Go to Step 4
41. Ignition ªOFFº.
2. Check the 12 volt signal circuit for the following
conditions:
An open circuit
A short to ground
Was the problem found?
ÐVerify repairÐ
5Check the MAF ground circuit for the following
conditions:
An open circuit
A short to voltage
Was a problem found?
ÐVerify repairÐ
61. Ignition ªOFFº.
2. Check the MAF Sensor signal circuit between the
PCM and the MAF Sensor for the following
conditions:
An open circuit
A short to ground
A short to battery voltage
Was a problem found?
ÐVerify repairGo to Step 7
6E±134
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0102 MAF Sensor Circuit Low Frequency
060R200052
Circuit Description
The mass air flow (MAF) sensor measures the amount of
air which passes through it into the engine during a given
time. The powertrain control module (PCM) uses the
mass air flow information to monitor engine operating
conditions for fuel delivery calculations. A large quantity
of air entering the engine indicates an acceleration or high
load situation, while a small quantity of air indicates
deceleration or idle.
The MAF sensor produces a frequency signal which can
be monitored using a Tech 2. The frequency will vary
within a range of around 4 to 7g/s at idle to around 25 to 40
g/s at maximum engine load. DTC P0102 will be set if the
signal from the MAF sensor is below the possible range of
a normally operating MAF sensor.
Conditions for Setting the DTC
The engine is running above 500 RPM for more than
10 seconds.
System voltage is above 11.5 volts.
MAF signal frequency is below 1.6g/s for a total of
50-percent of the last 1000 samples monitored. A
sample is taken every cylinder event.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM calculates an air flow value based on idle air
control valve position, throttle position, RPM and
barometric pressure.The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0102 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0102 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal-to-wire connection.
Misrouted harness ± Inspect the MAF sensor harness
to ensure that it is not routed too close to high voltage
wires.
Damaged harness ± Inspect the wiring harness for
damage. If the harness appears to be OK, observe the
Tech 2 while moving connectors and wiring harnesses
related to the MAF sensor. A change in the display will
indicate the location of the fault.
Plugged intake air duct or filter element ± A wide-open
throttle acceleration from a stop should cause the
mass air flow displayed on a Tech 2 to increase from
6E±140
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0106 MAP System Performance
060R200051
Circuit Description
The manifold absolute pressure (MAP) sensor responds
to changes in intake manifold pressure (vacuum). The
MAP sensor signal voltage to the powertrain control
module (PCM) varies from below 2 volts at idle (high
vacuum) to above 4 volts at wide-open throttle (low
vacuum) at sea level.
The MAP sensor is used to determine manifold pressure
changes while the linear exhaust gas recirculation (EGR)
flow test diagnostic is being run (refer to DTC P0401),
engine vacuum level for some other diagnostics, and
barometric pressure (BARO). The PCM compares the
MAP sensor signal to a calculated MAP based on throttle
position and various engine load factors. If the PCM
detects a MAP signal that varies excessively above or
below the calculated value, DTC P0106 will set.
Conditions for Setting the DTC
No TP sensor DTCs are present.
Engine speed is steady, changing less then 100 RPM.
Engine speed is between 1000 rpm and 4000 rpm.
Throttle position is steady, throttle angle changes less
than 1%.
EGR flow rate is steady, changing less than 4%.
No change in brake switch, A/C clutch, TCC or power
steering pressure switch status.
Above conditions are met for longer than 1 second.
Actual MAP value varies more than 10 kPa.The MAP value must vary for a total of 10 seconds over
a 20-second period of time that the samples were
monitored.
The failure must occur for 2 consecutive trips.
Action Taken When the DTC Sets
The PCM will illuminate the malfunction indicator lamp
(MIL) after the second consecutive trip in which the
fault is detected.
The PCM will default to a BARO value of 79.3 kPa.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0106 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0106 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal-to-wire connection.
6E±149
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0112 IAT Sensor Circuit Low Voltage
D06RY00147
Circuit Description
The intake air temperature (IAT) sensor is a thermistor
which measures the temperature of the air entering the
engine. The powertrain control module (PCM) applies 5
volts through a pull-up resistor to the IAT sensor. When
the intake air is cold, the sensor resistance is high and the
PCM will monitor a high signal voltage on the IAT signal
circuit. If the intake air is warm, the sensor resistance is
lower, causing the PCM to monitor a lower voltage. DTC
P0112 will set when the PCM detects an excessively low
signal voltage on the intake air temperature sensor signal
circuit.
Conditions for Setting the DTC
The engine has been running for over 15 seconds.
Vehicle speed is greater than 30 mph (48 km/h) .
IAT signal voltage indicates and intake air temperature
greater than 148C (298F) (about 5 volts) for a total
of 12.5 seconds over a 25-second period of time.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0112 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0112 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
Poor connection at PCM ± Inspect harness connectors
for backed-bout terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal-to-wire connection.
Damaged harness ± Inspect the wiring harness for
damage. If the harness appears to be OK, observe the
IAT display on the Tech 2 while moving connectors and
wiring harnesses related to the IAT sensor. A change
in the IAT display will indicate the location of the fault.
If DTC P0112 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
6E±155
6VE1 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Diagnostic Trouble Code (DTC) P0117 ECT Sensor Circuit Low Voltage
D06RY00148
Circuit Description
The engine coolant temperature (ECT) sensor is a
thermistor mounted on a coolant crossover pipe at the
front of the engine. The powertrain control module (PCM)
applies a voltage (about 5 volts) through a pull-up resistor
to the ECT signal circuit. When the engine coolant is cold,
the sensor (thermistor) resistance is high, therefore the
PCM will measure a high signal voltage. As the engine
coolant warms, the sensor resistance becomes lower,
and the ECT signal voltage measured at the PCM drops.
With a fully warmed-up engine, the ECT signal voltage
should measure about 1.5 to 2.0 volts.
Conditions for Setting the DTC
Engine running time is longer than 120 seconds.
The ECT sensor signal indicates an engine coolant
temperature greater than 150C (302F) (about 0.10
V) for a total of 50 seconds over a 100±second period.
Action Taken When the DTC Sets
The PCM will ON the MIL after second trip with
detected fault.
The PCM will substitute the ECT reading with a default
engine coolant temperature value. The default value
is based on start-up intake air temperature and running
time.
The PCM will store conditions which were present
when the DTC was set as Freeze Frame and in the
Failure Records data.
Conditions for Clearing the MIL/DTC
The PCM will turn the MIL ªOFFº on the third
consecutive trip cycle during which the diagnostic has
been run and the fault condition is no longer present.
A history DTC P0117 will clear after 40 consecutive
warm-up cycles have occurred without a fault.
DTC P0117 can be cleared by using the Tech 2 ªClear
Infoº function or by disconnecting the PCM battery
feed.
Diagnostic Aids
Check for the following conditions:
Poor connection at PCM ± Inspect harness connectors
for backed-out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal-to-wire connection.
Damaged harness ± Inspect the wiring harness for
damage. If the harness appears to be OK, observe the
ECT display on the Tech 2 while moving connectors
and wiring harnesses related to the ECT sensor. A
change in the ECT display will indicate the location of
the fault.
If DTC P0117 cannot be duplicated, the information
included in the Failure Records data can be useful in
determining vehicle mileage since the DTC was last set.
If it is determined that the DTC occurs intermittently,
performing the DTC P1114 Diagnostic Chart may isolate
the cause of the fault.