0B±6MAINTENANCE AND LUBRICATION
Always change the oil and the oil filter as soon as possible
after driving in a dust storm.
Engine Cooling System Inspection
Inspect the coolant/anti±freeze. If the coolant is dirty or
rusty, drain, flush and refill with new coolant. Keep coolant
at the proper mixture for proper freeze protection,
corrosion inhibitor level and best engine operating
temperature. Inspect hoses and replace if cracked,
swollen or deteriorated. Tighten the hose clamps if
equipped with screw±type clamps. Clean outside of
radiator and air conditioning condenser. Wash filler cap
and neck. To help ensure proper operation, a pressure
test of both the cooling system and the cap is also
recommended.
Exhaust System Inspection
Visually inspect the exhaust pipes, muffler, heat shields
and hangers for cracks, deterioration, or damage.
Be alert to any changes in the sound of the exhaust
system or any smell of fumes. These are signs the system
may be leaking or overheating. Repair the system at
once, if these conditions exist. (See also ªEngine Exhaust
Gas Safetyº and ªThree Way Catalytic Converterº in the
Owner's manual.)
Fuel Cap, Fuel Lines, and Fuel Tank
Inspection
Inspect the fuel tank, the fuel cap and the fuel lines every
60,000 miles (96,000 km) for damage which could cause
leakage.
Inspect the fuel cap and the gasket for correct sealing and
physical damage. Replace any damaged parts.
Drive Belt Inspection
Check the serpentine belt driving for cracks, fraying,
wear, and correct tension every 30,000 miles (48,000
km). Replace as necessary.
Wheel Alignment, Balance and Tires
Operation
Uneven or abnormal tire wear, or a pull right or left on a
straight and level road may show the need for a wheel
alignment. A vibration of the steering wheel or seat at
normal highway speeds means a wheel balancing is
needed. Check tire pressure when the tires are ªcoldº
(include the spare).
Maintain pressure as shown in the tire placard, which is
located on the driver's door lock pillar.
Steering System Operation
Be alert for any changes in steering operation. An
inspection or service is needed when the steering wheel
is harder to turn or has too much free play, or if there are
unusual sounds when turning or parking.
Brake Systems Operation
Watch for the ªBRAKEº light coming on. Other signs of
possible brake trouble are such things as repeated pulling
to one side when braking, unusual sounds when braking
or between brake applications, or increased brake pedaltravel. If you note one of these conditions, repair the
system at once.
For convenience, the following should be done when
wheels are removed for rotation: Inspect lines and hoses
for proper hookup, bindings, leaks, crack, chafing etc.
Inspect disc brake pads for wear and rotors for surface
condition.
Inspect other brake parts, including parking brake drums,
linings etc., at the same time. Check parking brake
adjustment.
Inspect the brakes more often if habit or conditions
result in frequent braking.
Parking Brake and Transmission Park
Mechanism Operation
Park on a fairly steep hill and hold the vehicle with the
parking brake only. This checks holding ability. On
automatic transmission vehicles, shifting from ªPº
position to the other positions cannot be made unless the
brake pedal is depressed when the key switch is in the
ªONº position or the engine is running.
WARNING: B E F O R E C H E C K I N G T H E S TA R T E R
SAFETY SWITCH OPERATION BELOW, BE SURE TO
HAVE ENOUGH ROOM AROUND THE VEHICLE.
THEN FIRMLY APPLY BOTH THE PARKING BRAKE
AND THE REGULAR BRAKE. DO NOT USE THE
ACCELERATOR PEDAL. IF THE ENGINE STARTS,
BE READY TO TURN OFF THE KEY PROMPTLY.
TAKE THESE PRECAUTIONS BECAUSE THE
VEHICLE COULD MOVE WITHOUT WARNING AND
POSSIBLY CAUSE PERSONAL INJURY OR
PROPERTY DAMAGE.
Starter Safety Switch Operation
Check by trying to start the engine in each gear while
setting the parking brake and the foot brake. The starter
should crank only in ªPº (Park) or ªNº (Neutral).
Accelerator Linkage Lubrication
Lubricate the accelerator pedal fulcrum pin with chassis
grease.
Steering and Suspension Inspection
Inspect the front and rear suspension and steering
system for damaged, loose or missing parts or signs of
wear. Inspect power steering lines and hoses for proper
hookup, binding, leaks, cracks, chafing, etc.
Body and Chassis Lubrication
Lubricate the key lock cylinders, the hood latch, the hood
and door hinges, the door check link, the parking cable
guides, the underbody contact points, and the linkage.
Propeller Shaft Inspection and Lubrication
Check the propeller shaft flange±to±pinion bolts for
proper torque to 63 Nwm (46 lb ft) for front and rear
propeller shaft.
HEATING, VENTILATION AND AIR CONDITIONING (HVAC)
1A±37
8. When finished with the refrigerant charging, close the
low pressure valve of the manifold gauge and
container valve.
9. Check for refrigerant leaks.
Checking The A/C System
1. Run the engine and close all the vehicle doors.
2. Turn A/C switch ªONº, set the fan switch to its highest
position.
3. Set the air source switch to ªCIRCº, set the
temperature switch to the full cool position.
4. Check the high and low pressure of the manifold
gauge.
Immediately after charging refrigerant, both high
and low pressures might be slightly high, but they
settle down to the pressure guidelines shown
below:
The ambient temperature should be between
25±30C (77±86F).
The pressure guideline for the high-pressure side is
approximately 1372.9±1863.3 kPa (199.1±270.2
psi).
The pressure guideline for the low-pressure side is
approximately 147.1±294.2 kPa (21.3±42.7 psi).
If an abnormal pressure is found, refer to
Checking
The Refrigerant System With Manifold Gauge in
this section.
5. Put your hand in front of the air outlet and move the
temperature switch of the control panel to different
positions. Check if the outlet temperature changes as
selected by the control switch.
HEATING, VENTILATION AND AIR CONDITIONING (HVAC)
1A±89
Performance and Movement
checklist for Automatic Air
Conditioner Related Parts
Start the engine, and when the engine coolant reached
50C (122F) check performance and movement of the
related parts according the following checklist.
Performance Check Using the Manual Switch
NoItemProcedureCriteriaNo.ItemConditionOperationCriteria
1
Air discharge
temperature
(Ai i d
Auto±switch ONSet temperature to
18C (65F).Cold air discharge.
1(Air±mix door
operation)Set temperature to
32C (90F).Hot air discharge.
2
Air discharge
volume (Fan
operation)Fan switch ON1. Set temperature to
25C (77F).
2. Press the OFF
switch.Fan does not operate. There is no
air discharge.
21. Set temperature to
25C (77F).
2. Press the fan
switch.Fan operates. Fan speed increases
each time the switch is pressed (LO
to HI in 5 increments).
3
Air discharge
temperature
(Mode door
operation)Fan in manual
5±speed operation1. Set temperature to
25C (77F).
2. Press the mode
switch.
3. Move through the 5
modes
(VENT"BI±LEVEL
"FOOT"DEF/FO
OT"DEF).Panel display lights for each
mode.
Air discharge outlet position
changes for each mode.
4
Inside/outside air
mode (Intake door
operation)Auto±switch ON1. Set temperature to
25C (77F).
2. Press the intake
switch.
3. Press the fan
switch.
4. Set the fan to the
highest speed.
5. Press the intake
switch.Intake switch LED turns from on
to off.
Air discharge sound changes.
5
CompressorOutside air
temperature above
0C (32F) and
vehicle interior at
normal temperature1. Set temperature to
25C (77F).
2. Press the OFF
switch.
3. Press the
auto±switch.
4. Press the air
conditioner switch.When the auto±switch is
pressed, the LED in the air
conditioner switch turns on and
the compressor begins
operation.
When the air conditioner switch
is pressed, the LED in the air
conditioner switch turns off and
the compressor stops operation.
POWER±ASSISTED STEERING SYSTEM2A±11
4. Bleed the system. Refer to Bleeding the Power
Steering System
in this section.
5. Start the engine and check the fluid level. Add power
steering fluid if required. When the engine is at
normal operating temperature, increase engine
speed to 1500 rpm.
CAUTION: Do not leave shutoff valve fully closed
for more than 5 seconds, as the pump could become
damaged internally.
6. Fully close the shutoff valve. Record the highest
pressures.
If the pressure recorded is within 9300±9800 kPa
(1350±1420 psi), the pump is functioning within its
specifications.
If the pressure recorded is higher than 9800 kPa
(1420 psi), the valve in the pump is defective.
If the pressure recorded is lower than 9300 kPa
(1350 psi), the valve or the rotating group in the
pump is defective.
7. If the pump pressures are within specifications, leave
the valve open and turn (or have someone else turn)
the steering wheel fully in both directions. Record the
highest pressures and compare with the maximum
pump pressure recorded in step 6. If this pressure
cannot be built in either side of the power steering
unit, the power steering unit is leaking internally and
must be replaced.
8. Shut the engine off, remove the testing gauge.
9. Reconnect the pressure hose, check the fluid level
and make the needed repairs.
10. If the problem still exists, the steering and front
suspension must be thoroughly examined.
Maintenance
The hydraulic system should be kept clean and fluid level
in the reservoir should be checked at regular intervals and
fluid added when required. Refer to
Recommended
Fluids and Lubricants in General Information
section for
the type of fluid to be used and the intervals for filling.
If the system contains some dirt, flush it as described in
this section. If it is exceptionally dirty, the pump must be
completely disassembled before further usage. (The
steering unit cannot be disassembled.)
All tubes, hoses, and fittings should be inspected for
leakage at regular intervals. Fittings must be tight. Make
sure the clips, clamps and supporting tubes and hoses
are in place and properly secured.
Power steering hoses and lines must not be twisted,
kinked or tightly bent. Air in the system will cause spongy
action and noisy operation. When a hose is disconnected
or when fluid is lost, for any reason, the system must be
bled after refilling. Refer to
Bleeding the Power Steering
System
in this section.
Inspect belt for tightness.
Inspect pulley for looseness or damage. The pulley
should not wobble with the engine running.
Inspect hoses so they are not touching any other
parts of the vehicle.
Inspect fluid level and fill to the proper level.
Fluid Level
1. Run the engine until the power steering fluid reaches
normal operating temperature, about 55C (130F),
then shut the engine off.
2. Check the level of fluid in the reservoir.
3. If the fluid level is low, add power steering fluid as
specified in General Information to the proper level
and install the receiver cap.
4. When checking the fluid level after the steering
system has been serviced, air must be bled from the
system. Refer to
Bleeding the Power Steering
System
in this section.
Bleeding The Power Steering System
When a power steering pump or unit has been installed,
or an oil line has been disconnected, the air that has
entered the system must be bled out before the vehicle is
operated. If air is allowed to remain in the power steering
fluid system, noisy and unsatisfactory operation of the
system may result.
Bleeding Procedure
When bleeding the system, and any time fluid is added to
the power steering system, be sure to use only power
steering fluid as specified in General Information.
1. Fill the pump fluid reservoir to the proper level and let
the fluid settle for at least two minutes.
2. Start the engine and let it run for a few seconds. Do
not turn the steering wheel. Then turn the engine off.
3. Add fluid if necessary.
4. Repeat the above procedure until the fluid level
remains constant after running the engine.
5. Raise and support the front end of the vehicle so that
the wheels are off the ground.
6. Start the engine. Slowly turn the steering wheel right
and left, lightly contacting the wheel stops.
7. Add power steering fluid if necessary.
8. Lower the vehicle, set the steering wheel at the
straight forward position after turning it to its full steer
positions 2 or 3 times, and stop the engine.
9. Check the fluid level and refill as required.
10. If the fluid is extremely foamy, allow the vehicle to set
a few minutes, then repeat the above procedure.
Flushing The Power Steering System
1. Raise and support the front end of the vehicle off the
ground until the wheels are free to turn.
2. Remove the fluid return line at the pump inlet
connector and plug the connector port on the pump.
Position the line toward a large container to catch the
draining fluid.
3. While running the engine at idle, fill the reservoir with
new power steering fluid. Turn the steering wheel in
both directions. Do not contact or hold the steering
wheel to the wheel stops. This will cause the pump to
go to pressure relief mode, which may cause a
sudden fluid overflow at the reservoir.
3F±8INTELLIGENT SUSPENSION
INTERMITTENT CONDITIONS
If the Warning Lamp flashes a diagnostic trouble code as
intermittent, or if after a test drive a DTC does not
reappear though the detection conditions for this DTC are
present: the problem is most likely a faulty electrical
connection or loose wiring. Terminals and grounds should
always be the prime suspect. Intermittents rarely occur
inside sophisticated electronic components such as the
Control Unit.
Use the DTC information to understand which wires and
sensors are involved.
When an intermittent problem is encountered, check
suspect circuits for:
1. Poor terminal to wire connection.
2. Terminals not fully seated in the connector body
(backed out).
3. Improperly formed or damaged terminals.
4. Loose, dirty, or corroded ground connections:
HINT: Any time you have an intermittent in more than
one circuit, check whether the circuits share a
common ground connection.
5. Pinched or damaged wires.
6. Electro-Magnetic Interference (EMI):
HINT: Check that all wires are properly routed away
from spark plug wires, distributor wires, coil, and
generator. Also check for improperly installed
electrical options, such as lights, 2-way radios, etc.
BULB CHECK
When the starter switch is turned on in the normal state,
the Control Unit turns on the Warning Lamp to check the
bulb. After the engine starts, the Warning Lamp turns off.
F03RY00003
DTC CHECK
1. Diagnosis Trouble Codes (DTC) have been identified
by FLASHING CODES.
2. You have written the list of the DTC. The order of the
malfunctions has no meanings for this Control Unit.
Usually only one or two malfunctions should be set for
a given problem.
3. Check directly the DTCs you identified. The DTC are
sorted by number:
DIAGNOSTIC TROUBLE CODES.
INTELLIGENT SUSPENSION3F±25
DTC6 Stop Lamp Switch Open Circuit or Short
Circuit Description
The brake switch is used to indicate brake pedal status.
The normally opened brake switch signal voltage circuit is
opened.
Brake switch supplies a B+ signal on circuit RED to the
control unit when the brakes are applied. The control unit
uses this signal to work dive control when the brakes are
applied.
Diagnostic Aids
Inspect the wiring for poor electrical connections at
the control unit and brake switch. Look for possible
bent, backed out, deformed or damaged terminals.
Check for weak terminal tension as well. Also check
for a chafed wire that could short to bare metal or
other wiring. Inspect for a broken wire inside the
insulation.
When diagnosing for a possible intermittent short or
open condition, move the wiring harness while
observing test equipment for a change.
Check customer driving habits and/or unusual driving
conditions (i.e. stop and go, highway).
Check brake switch for proper mounting and
adjustment.
DTC6 Stop Lamp Switch Open Circuit or Short
StepActionValue(s)Ye sNo
11. With the engine ªoffº, turn the ignition switch ªonº. If
ABS code is set, check applicable fuse.
2. Apply then release the brake pedal.
Does the brake lamp come on when the brake pedal is
applied and does it come off when the brake pedal is
released?
Ð
Go to
Diagnostic
Aids
Go to Step 2
21. Connect the test light to ground.
2. Back probe ignition feed circuit terminal I±31
terminal 1 at the brake switch.
Is the test light ªonº?
ÐGo to Step 3Go to Step 4
31. Connect the test light to ground.
2. Back probe circuit terminal I±31 terminal 4 at the
brake switch.
Is the test light ªoffº?
ÐGo to Step 7Go to Step 5
4Repair the open in battery feed circuit terminal I±31
terminal 1 to the brake switch.
If fuse is open, check circuit terminal I±31 terminal 4 for
a short to ground.
Is the replacement complete?
ÐGo to Step 13Ð
5Disconnect brake switch connector I±31 and ignition
switch ªonº.
Is the test light ªonº?
ÐGo to Step 8Go to Step 6
6Check the brake switch short (I±31 terminal 1 and I±31
terminal 4).
Was a problem found?
ÐGo to Step 9Go to Step 10
7Check circuit terminal I±31 terminal 4 for a short to
voltage.
Ignition switch ªonº.
Is the test light ªonº?
ÐGo to Step 8Go to Step 10
81. Disconnect the control unit connector C±44.
2. Check circuit terminal I±31 terminal 4 for a short to
voltage.
Was a problem found?
ÐGo to Step 13Go to Step 10
DIFFERENTIAL (REAR)4A2±3
Diagnosis
Many noises that seem to come from the rear axle
actually originate from other sources such as tires, road
surface, wheel bearings, engine, transmission, muffler, or
body drumming. Investigate to find the source of the
noise before disassembling the rear axle. Rear axles, like
any other mechanical device, are not absolutely quiet but
should be considered quiet unless some abnormal noise
is present.
To make a systematic check for axle noise, observe the
following:
1. Select a level asphalt road to reduce tire noise and
body drumming.
2. Check rear axle lubricant level to assure correct level,
and then drive the vehicle far enough to thoroughly
warm up the rear axle lubricant.
3. Note the speed at which noise occurs. Stop the
vehicle and put the transmission in neutral. Run the
engine speed slowly up and down to determine if the
noise is caused by exhaust, muffler noise, or other
engine conditions.
4. Tire noise changes with different road surfaces; axle
noises do not. Temporarily inflate all tires to 344 kPa
(50 psi) (for test purposes only). This will change
noise caused by tires but will not affect noise caused
by the rear axle.
Rear axle nose usually stops when coasting at
speeds under 48 km/h (30 mph); however, tire noise
continues with a lower tone. Rear axle noise usually
changes when comparing pull and coast, but tire
noise stays about the same.
Distinguish between tire noise and rear axle noise by
noting if the noise changes with various speeds or
sudden acceleration and deceleration. Exhaust and
axle noise vary under these conditions, while tire
noise remains constant and is more pronounced at
speeds of 32 to 48 km/h (20 to 30 mph). Further check
for tire noise by driving the vehicle over smooth
pavements or dirt roads (not gravel) with the tires at
normal pressure. If the noise is caused by tires, it will
change noticeably with changes in road surface.
5. Loose or rough front wheel bearings will cause noise
which may be confused with rear axle noise; however,
front wheel bearing noise does not change when
comparing drive and coast. Light application of the
brake while holding vehicle speed steady will often
cause wheel bearing noise to diminish. Front wheel
bearings may be checked for noise by jacking up the
wheels and spinning them or by shaking the wheels to
determine if bearings are loose.
6. Rear suspension rubber bushings and spring
insulators dampen out rear axle noise when correctly
installed. Check to see that there is no link or rod
loosened or metal±to±metal contact.7. Make sure that there is no metal±to±metal contact
between the floor and the frame.
After the noise has been determined to be in the axle, the
type of axle noise should be determined, in order to make
any necessary repairs.
Gear Noise
Gear noise (whine) is audible from 32 to 89 km/h (20 to 55
mph) under four driving conditions.
1. In drive under acceleration or heavy pull.
2. Driving under load or under constant speed.
3. When using enough throttle to keep the vehicle from
driving the engine while the vehicle slows down
gradually (engine still pulls slightly).
4. When coasting with the vehicle in gear and the throttle
closed. The gear noise is usually more noticeable
between 48 and 64 km/h (30 and 40 mph) and 80 and
89 km/h (50 and 55 mph).
Bearing Noise
Bad bearings generally produce a rough growl or grating
sound, rather than the whine typical of gear noise.
Bearing noise frequently ªwow±wowsº at bearing rpm,
indicating a bad pinion or rear axle side bearing. This
noise can be confused with rear wheel bearing noise.
Rear Wheel Bearing Noise
Rear wheel bearing noise continues to be heard while
coasting at low speed with transmission in the neutral.
Noise may diminish by gentle braking. Jack up the rear
wheels, spin them by hand and listen for noise at the
hubs. Replace any faulty wheel bearings.
Knock At Low Speeds
Low speed knock can be caused by worn universal joints
or a side gear hub counter bore in the cage that is worn
oversize. Inspect and replace universal joints or cage and
side gears as required.
Backlash Clunk
Excessive clunk on acceleration and deceleration can be
caused by a worn rear axle pinion shaft, a worn cage,
excessive clearance between the axle and the side gear
splines, excessive clearance between the side gear hub
and the counterbore in the cage, worn pinion and side
gear teeth, worn thrust washers, or excessive drive pinion
and ring gear backlash. Remove worn parts and replace
as required. Select close±fitting parts when possible.
Adjust pinion and ring gear backlash.
DRIVE LINE CONTROL SYSTEM (TOD) 4B2±16
How to Clear The Trouble Code
The trouble codes saved to the control unit can be deleted
by the following procedure if the starter switch is being in
the OFF position.
1. Short-circuit terminal 8 of the self-diagnostic
connector to GND (terminal 4 or 5).
2. Turn on the starter switch while maintaining the state
of step1, and stop short-circuiting terminal 8 to GND
within five seconds.
826R200011
3. If the conditions shown in steps 1 and 2 are met, the
trouble codes saved to the control unit are cleared.
(After the codes are completely deleted, the code 12
that indicates the normal condition is continuously
displayed.)
Precautions on Diagnosis
Replacement of Control Unit
The control unit itself rarely fails. In most cases, the
harnesses have failed (i.e. short-circuit) to cause
secondary troubles. Other cases include that the cause
has been unknown due to intermittent occurrence of
troubles and the troubles are removed accidentally along
with replacement of control unit, resulting in misjudgment
of cause. Therefore, before replacing the control unit,
check the connector joints and whether the unspecified
current flows in the control unit due to short-circuit
between harnesses.
Trouble Intermittently Observed
Troubles intermittently observed are mostly attributable
to temporary imperfect connection of harnesses and
connectors.
When such troubles are found, check the associated
circuit according to the following procedure.
1. Check whether improper connectors are plugged in
or connector terminals are completely engaged.
2. Check whether the terminals are deformed or
damaged. If yes, remove the deformation or damage
and connect the terminals securely.3. It is likely that wires in the harness are falsely broken.
Therefore, in examination of failed harness circuit,
shake the harness for check to such extent that the
harness will not be damaged.
Test Run of Failed TOD Vehicle
If the TOD indicator lamps experienced faulty operation
even once in the past, the failed portion can be identified
by use of the procedure ªDiagnosis from Trouble Codesº
or ªTrouble Diagnosis Depending on the Status of TOD
Indicatorº. If the troubles that are only recognized as
abnormal phenomena of the vehicle by the driver are
observed, conduct the test run in the following procedure
to reproduce the faulty phenomena and diagnose the fault
for each phenomenon.
1. Start the engine, and check that the TOD indicator
lamps are turned on for about two seconds for initial
check; the CHECK lamp goes off; and the TOD
indicator lamps display the specified drive mode. (If
the CHECK lamp starts blinking, read the trouble
codes and identify the failed portion.)
2. While keeping the vehicle standstill, operate the TOD
switch to change the modes: 2H mode"TOD
mode"4L mode"TOD mode"2H mode. Check
that the TOD indicator lamps correctly display the
status whenever the mode is changed. If the
transition status is displayed during the shift
operation, run the vehicle a little to complete shifting.
3. Slowly start the vehicle in the TOD mode, and add the
power to accelerate to at least 40 km/h (25 mph)and
maintain the speed for about two minutes. Apply the
brake to completely stop the vehicle. Repeat this test
pattern at least three times.
4. Turn the steering to the right end (or left end) in the
TOD mode, and slowly start the vehicle and make a
circle five times. Next, conduct the same test in the 2H
mode.
5. Slowly start the vehicle in the TOD mode, and
accelerate to at least 40 km/h (25 mph). Keep the
established speed, carefully change the mode in the
sequence ªTOD mode"2H mode "TOD modeº
while checking that the shift is complete in each mode
change. After the test, apply the brake to completely
stop the vehicle.
6. Slowly start the vehicle in the TOD mode, and
accelerate to at least 40 km/h (25 mph). Apply the
brake strongly so that the ABS works, and completely
stop the vehicle.
7. Slowly start the vehicle in the 4L mode, and
accelerate to at least 20 km/h (13 mph). Apply the
brake to completely stop the vehicle.
If the CHECK lamp starts blinking during the test run, read
the trouble codes and give appropriate maintenance
according to the diagnostic procedure. If the TOD
indicator lamps are lit abnormally during the run, check
the lighting condition and give appropriate maintenance
according to the diagnostic procedure. Even if the
phenomena are not observed, try to reproduce the
abnormal state reported by the customer to the possible
extent.