4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS 6E–209
Condition for setting the DTC and action taken when the DTC sets
Circuit Description
The CKP sensor is located on top of the flywheel
housing of the flywheel and fix ed with a bolt. The CKP
sensor is of the magnet coil type. The inductive pickup
sensors four gaps in the flywheel ex citer ring and is
used to determine the engine speed and engine
cylinder top dead center.
If the CKP sensor harness or sensor malfunction is
detected during engine run, DTC P0335 (Symptom
Code B) is stored.
If the CKP sensor harness or sensor malfunction is
detected during engine cranking, DTC P0335
(Symptom Code D) is stored.
If the CKP sensor signal frequency is ex cessively high
or engine over-running, DTC P0335 (Symptom Code E)
is stored.
Diagnostic Aids
An intermittent may be caused by the following:
Poor connections.
Misrouted harness.
Rubbed through wire insulation.
Broken wire inside the insulation.
Check for the following conditions:
Poor connection at ECM-Inspect harness connectors
for backed out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal to wire connection.
Damaged harness-Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the “Engine Speed” display on the Tech2 while
moving connectors and wiring harness related to the
sensor.
Diagnostic Trouble Code (DTC) P0335 (Symptom Code B) (Flash Code 43)
Crankshaft Position Sensor Circuit Malfunction
Diagnostic Trouble Code (DTC) P0335 (Symptom Code D) (Flash Code 43)
Crankshaft Position Sensor Malfunction
Flash
CodeCode Symptom
CodeMIL DTC Name DTC Setting Condition Fail-Safe (Back Up)
43 P0335 B ON Crankshaft Position Sensor
Circuit Ma lfunction1. Engine speed is more than
665rpm.
2. CKP sensor pulse width
e rro r.When pump camshaft speed
senso r is OK:
ECM use s do uble d pump cam-
sha ft spe ed as substitute
engine speed.
When pump camshaft speed
senso r is not OK:
1. MAB (fuel cutoff solenoid
valve) is operated.
2. Desired injection quantity
becomes 0mg/strk.
D ON Crankshaft Position Sensor
Circuit Ma lfunction1. No pump camshaft speed
se nsor erro r.
2.“Cranksha ft Position Se n-
so r Circuit Ma lfunction
(Symptom Code B)” is not
stored.
3. Engine speed is 0rpm.
4. Do uble d pump camsha ft
speed is more than 50rpm.When pump camshaft speed
senso r is OK:
ECM use s do uble d pump cam-
sha ft spe ed as substitute
engine speed.
Other tha n pump camsha ft
speed sensor is OK:
Fuel inje ctio n qua ntity is
reduced.
E ON Engine Speed Input Circuit
Range/PerformanceEngine spe ed is more tha n
5700rpm.When intermittent malfunction:
1. MAB (fuel cutoff solenoid
valve) is operated.
2. Desired injection quantity
becomes 0mg/strk.
When preliminary malfunction:
ECM use s do uble d pump cam-
sha ft spe ed as substitute
engine speed.
Step Action Value(s) Yes No
1Was the “On-Board Diagnostic (OBD) System Check”
performed?
—Go to Step 2Go to On Board
Diagnostic
(OBD) System
Check
6E–306 4JA1/4JH1 ENGINE DRIVEABILITY AND EMISSIONS
DIAGNOSTIC TROUBLE CODE (DTC) P1335 (SYMPTOM CODE A)
(FLASH CODE 43) ENGINE SPEED OUTPUT CIRCUIT MALFUNCTION
Condition for setting the DTC and action taken when the DTC sets
Circuit Description
The CKP sensor is located on top of the flywheel
housing of the flywheel and fix ed with a bolt. The CKP
sensor is of the magnet coil type. The inductive pickup
sensors four gaps in the flywheel ex citer ring and is
used to determine the engine speed and engine
cylinder top dead center.
The ECM converts sine wave signal to square wave
signal. And this signal is provided from the ECM to
pump control unit (PSG).
Diagnostic Aids
An intermittent may be caused by the following:
Poor connections.
Misrouted harness.
Rubbed through wire insulation.
Broken wire inside the insulation.
Check for the following conditions:
Poor connection at ECM-Inspect harness connectors
for backed out terminals, improper mating, broken
locks, improperly formed or damaged terminals, and
poor terminal to wire connection.
Flash
CodeCode Symptom
CodeMIL DTC Name DTC Setting Condition Fail-Safe (Back Up)
43 P1335 A ON Engine Speed Output Circuit
Malfunctio nThe PSG (pump control unit)
is recognized defective
engine speed signal form the
ECM.Fuel inje ctio n qua ntity is
reduced.
ENGINE MECHANICAL (6VE1 3.5L) 6A-3
General Description
Engine Cleanliness And Care
An automobile engine is a combination of many
machined, honed, polished and lapped surfaces with
tolerances that are measured in the thousandths of a
millimeter (ten thousandths of an inch). Accordingly,
when any internal engine parts are serviced, care and
cleanliness are important. Throughout this section, i
t
should be understood that proper cleaning and
protection of machined surfaces and friction areas is
part of the repair procedure. This is considered
standard shop practice even if not specifically stated.
A liberal coating of engine oil should be applied to
all friction areas during assembly to protect and
lubricate the surfaces on initial operation.
Whenever valve train components, pistons, piston
rings, connecting rods, rod bearings, and
crankshaft journal bearings are removed fo
r
service, they should be retained in order.
At the time of installation, they should be installed
in the same locations and with the same mating
surfaces as when removed.
Battery cables should be disconnected before any
major work is performed on the engine. Failure to
disconnect cables may result in damage to wire
harness or other electrical parts.
The six cylinders of this engine are identified by
numbers; Right side cylinders 1, 3 and 5, Left side
cylinders 2, 4 and 6, as counted from crankshaf
t
pulley side to flywheel side.
General Information on Engine Service
The following information on engine service should be
noted carefully, as it is important in preventing damage
and contributing to reliable engine performance.
When raising or supporting the engine for any
reason, do not use a jack under the oil pan. Due to
the small clearance between the oil pan and the oil
pump strainer, jacking against the oil pan may
cause damage to the oil pick-up unit.
The 12-volt electrical system is capable o
f
damaging circuits. When performing any work
where electrical terminals could possibly be
grounded, the ground cable of the battery should
be disconnected at the battery.
Any time the intake air duct or air cleaner is
removed, the intake opening should be covered.
This will protect against accidental entrance o
f
foreign material into the cylinder which could
cause extensive damage when the engine is
started.
Cylinder Block
The cylinder block is made of aluminum die-cast casting
for 75Vtype six cylinders. It has a rear plate integrated
structure and employs a deep skirt. The cylinder liner is
cast and the liner inner diameter and crankshaft journal
diameter are classified into grades. The crankshaft is
supported by four bearings of which width is differen
t
between No.2, No.3 and No.1, No.4; the width of No.3
bearing on the body side is different in order to suppor
t
the thrust bearing. The bearing cap is made of nodular
cast iron and each bearing cap uses four bolts and two
side bolts.
Cylinder Head
The cylinder head, made of aluminum alloy casting
employs a pent-roof type combustion chamber with a
spark plug in the center. The intake and exhaust valves
are placed in V-type design. The ports are cross-flo
w
type.
Valve Train
Intake and exhaust camshaft on the both side of banks
are driven through an camshaft drive gear by timing
belt. The valves are operated by the camshaft and the
valve clearance is adjusted to select suitable thickness
shim.
Intake Manifold
The intake manifold system is composed of the
aluminum cast common chamber and intake manifold
attached with six fuel injectors.
Exhaust Manifold
The exhaust manifold is made of nodular cast iron.
Pistons and Connecting Rods
Aluminum pistons are used after selecting the grade
that meets the cylinder bore diameter. Each piston has
two compression rings and one oil ring. The piston pin
made of chromium steel is offset 1mm toward the thrus
t
side, and the thrust pressure of piston to the cylinder
wall varies gradually as the piston travels. The
connecting rods are made of forged steel. The
connecting rod bearings are graded for correct size
selection.
Crankshaft and Bearings
The crankshaft is made of Ductile cast-iron. Pins and
journals are graded for correct size selection for thei
r
bearing.
Engine Control Module (ECM)
The ECM location is on the common charmber.
ENGINE MECHANICAL (6VE1 3.5L) 6A-7
Rough Engine Running
Symptom Possible Cause Action
Engine misfires periodically Ignition coil layer shorted Replace
Spark plugs fouling Clean or install hotter type plug
Spark plug(s) insulator nose leaking Replace
Fuel injector(s) defective Replace
Engine control module faulty Replace
Engine knocks periodically Spark plugs running too hot Install colder type spark plugs
Engine control module faulty Replace
Engine lacks power Spark plugs fouled Clean
Fuel injectors defective Replace
Mass Airflow Sensor or Intake Airflow
Sensor circuit defective Correct or replace
Engine Coolant Temperature Sensor
or Engine Coolant Temperature
Sensor circuit defective Correct or replace
Engine Control Module faulty Replace
Intake Air Temperature Sensor or
Intake Air Temperature Sensor circuit
defective Correct or replace
Throttle Position Sensor or Throttle
Position Sensor circuit defective Correct or replace
ENGINE MECHANICAL (6VE1 3.5L) 6A-93
Main Data and Specification
General Specification
Item Specifications
Engine type, number of cylinders and arrangement Water cooled, four cycle V6
Form of combustion chamber Pent-roof type
Valve mechanism 4-Cams, 4-Valves, DOHC Gear & Belt Drive
Cylinder liner type Casted in cylinder block
Total piston displacement 3494 cc
Cylinder bore x stroke 93.4mm x 85.0mm
(3.6772 in 3.3465 in)
Compression ratio 8.6
Compression pressure at 300rpm 1.37 MPa (14.0 Kg/cm2)
Engine idling speed rpm Non adjustable (750)
Valve clearance Intake: 0.28 mm (0.11 in)
Exhaust: 0.30mm (0.12 in)
Oil capacity 5.3 liters
Ignition timing
Non adjustable (12 BTDC at idle rpm)
Spark plug PK16PR11, RC10PYP4, K16PR-P11
Plug gap 1.0 mm – 1.1 mm (0.0394 in – 0.0433 in)
ENGINE COOLING (6VE1 3.5L) 6B-3
Water Pump
The EC pump is a centrifugal impeller type and is driven
by a timing belt.
030RS001
Thermostat
The thermostat is a wax pellet type with a air hole(1)
and is installed in the thermostat housing.
031RW002
Radiator
The radiator is a tube type with corrugated fins. In order
to raise the boiling point of the coolant, the radiator is
fitted with a cap in which the valve is operated at 93.3
122.7 kPa (13.5 17.8 psi) pressure. (No oil cooler
provided for M/T)
110RS001
Antifreeze Solution
Calculating mixing ratio
F06RW005
STARTING AND CHARGING SYSTEM (6VE1 3.5L) 6D3-15
Charging System
General Description
The IC integral regulator charging system and its main
components are connected as shown in illustration.
The regulator is a solid state type and it is mounted
along with the brush holder assembly inside the
generator installed on the rear end cover.
The generator does not require particular maintenance
such as voltage adjustment.
The rectifier connected to the stator coil has eigh
t
diodes to transform AC voltage into DC voltage.
This DC voltage is connected to the output terminal o
f
generator.
General On–Vehicle Inspection
The operating condition of charging system is indicated
by the charge warning lamp. The warning lamp comes
on when the starter switch is turned to “ON" position.
The charging system operates normally if the lamp
goes off when the engine starts.
If the warning lamp shows abnormality or i
f
undercharged or overcharged battery condition is
suspected, perform diagnosis by checking the charging
system as follows:
1. Check visually the belt and wiring connector.
2. With the engine stopped, turn the stator switch to
“ON" position and observe the warning lamp.
If lamp does not come on:
Disconnect wiring connector from generator, and
ground the terminal “L" on connector side.
If lamp comes on:
Repair or replace the generator.
F06RW009
6E-2 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Visual/Physical Engine Compartment
Inspection ...................................................... 6E-74
Basic Knowledge of Tools Required............... 6E-71
Serial Data Communications .......................... 6E-71
On-Board Diagnostic (OBD) ........................... 6E-71
Comprehensive Component Monitor
Diagnostic Operation ..................................... 6E-71
The Diagnostic Executive ............................... 6E-72
Verifying Vehicle Repair ................................. 6E-73
Reading Flash Diagnostic Trouble Codes ...... 6E-73
Reading Diagnostic Trouble Codes Using
a Tech 2......................................................... 6E-73
On-Board Diagnosis (Self-Diagnosis)............. 6E-74
Diagnosis with Tech 2 .................................... 6E-75
TYPICAL SCAN DATA & DEFINITIONS
(ENGINE DATA) ............................................... 6E-79
TYPICAL SCAN DATA & DEFINITIONS
(O2 SENSOR DATA)........................................ 6E-81
MISCELLANEOUS TEST .................................. 6E-83
PLOTTING SNAPSHOT GRAPH ...................... 6E-85
Plotting Graph Flow Chart (Plotting graph
after obtaining vehicle information)................ 6E-86
Flow Chart for Snapshot Replay
(Plotting Graph) ............................................. 6E-87
SNAPSHOT DISPLAY WITH TIS2000.............. 6E-88
SERVICE PROGRAMMING SYSTEM (SPS).... 6E-91
HOW TO USE BREAKER BOX ........................ 6E-94
ON-BOARD DIAGNOSTIC (OBD) SYSTEM
CHECK ............................................................. 6E-97
NO CHECK ENGINE LAMP (MIL)..................... 6E-101
CHECK ENGINE LAMP (MIL) "ON" STEADY ... 6E-104
FUEL INJECTOR COIL TEST PROCEDURE
AND FUEL INJECTOR BALANCE
TEST PROCEDURE ......................................... 6E-106
FUEL SYSTEM ELECTRICAL TEST ................ 6E-111
FUEL SYSTEM DIAGNOSIS ............................. 6E-116
A/C SYSTEM CIRCUIT DIAGNOSIS ................ 6E-122
ECM DIAGNOSTIC TROUBLE CODES (DTC) 6E-130
MULTIPLE DTC SETS TROUBLESHOOTING
AIDS ................................................................. 6E-142
DTC P0101 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT
RANGE/PERFORMANCE ................................ 6E-146
DTC P0102 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT LOW INPUT ... 6E-149
DTC P0103 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT HIGH INPUT .. 6E-154
DTC P0112 (FLASH CODE 23) INTAKE AIR
TEMPERATURE (IAT) SENSOR LOW
INPUT ............................................................... 6E-158 DTC P0113 (FLASH CODE 23) INTAKE AIR
TEMPERATURE (IAT) SENSOR HIGH
INPUT ............................................................... 6E-163
DTC P0117 (FLASH CODE 14) ENGINE
COOLANT TEMPERATURER (ECT)
SENSOR LOW INPUT ..................................... 6E-168
DTC P0118 (FLASH CODE 14) ENGINE
COOLANT TEMPERATURER (ECT)
SENSOR HIGH INPUT..................................... 6E-173
DTC P0121 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
RANGE/PERFORMANCE ................................ 6E-179
DTC P0122 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
LOW INPUT ..................................................... 6E-183
DTC P0123 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
HIGH INPUT ..................................................... 6E-188
DTC P0131 (FLASH CODE 15) O2 SENSOR
CIRCUIT LOW VOLTAGE
(BANK 1 SENSOR 1) ....................................... 6E-193
DTC P0151 (FLASH CODE 15) O2 SENSOR
CIRCUIT LOW VOLTAGE
(BANK 2 SENSOR 1) ....................................... 6E-193
DTC P0132 (FLASH CODE 15) O2 SENSOR
CIRCUIT HIGH VOLTAGE
(BANK 1 SENSOR 1) ....................................... 6E-201
DTC P0152 (FLASH CODE 15) O2
SENSOR CIRCUIT HIGH VOLTAGE
(BANK 2 SENSOR 1) ....................................... 6E-201
DTC P0134 (FLASH CODE 15) O2 SENSOR
CIRCUIT NO ACTIVITY DETECTED
(BANK 1 SENSOR 1) ....................................... 6E-207
DTC P0154 (FLASH CODE 15) O2 SENSOR
CIRCUIT NO ACTIVITY
DETECTED (BANK 2 SENSOR 1) ................... 6E-207
DTC P0171 (FLASH CODE 44) O2 SENSOR
SYSTEM TOO LEAN (BANK 1) ....................... 6E-211
DTC P0174 (FLASH CODE 44) O2 SENSOR
SYSTEM TOO LEAN (BANK 2) ....................... 6E-211
DTC P0172 (FLASH CODE 45) O2 SENSOR
SYSTEM TOO RICH (BANK 1) ........................ 6E-216
DTC P0175 (FLASH CODE 45) O2 SENSOR
SYSTEM TOO RICH (BANK 2) ........................ 6E-216
DTC P1171 (FLASH CODE 44) FUEL
SUPPLY SYSTEM LEAN DURING POWER
ENRICHMENT (TYPE A) ................................. 6E-221
DTC P1172 (FLASH CODE 44) FUEL SUPPLY
SYSTEM LEAN DURING POWER
ENRICHMENT (TYPE B) ................................. 6E-221