STARTING AND CHARGING SYSTEM (6VE1 3.5L) 6D3-21
Stator Coil
1. Measure resistance between respective phases.
2. Measure insulation resistance between stator coil
and core with a mega–ohmmeter.
If less than standard, replace the coil.
066RS018
Brush
Measure the brush length.
If more than limit, replace the brush.
Standard: 10.mm (0.4134 in)
Limit: 8.4.mm (0.3307 in)
066RS019
Rectifier Assembly
Check for continuity across “P" and “E" in the 100W
range of multimeter.
066RW002
Change polarity, and make sure that there is continuity
in one direction, and not in the reverse direction. In case
of continuity in both directions, replace the rectifie
r
assembly.
IC Regulator Assembly
Check for continuity across “B" and “F" in the 100W
range of multimeter.
066RS021
Change polarity, and make sure that there is continuity
in one direction, and not in the reverse direction. In case
of continuity in both directions, replace the IC regulato
r
assembly.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-1
ENGINE
3.5L ENGINE DRIVEABILITY AND EMISSIONS
CONTENTS
ABBREVIATION CHARTS ................................ 6E-5
COMPONENT LOCATOR ................................. 6E-6
ENGINE COMPONENT LOCATOR TABLE .. 6E-6
ECM CIRCUIT DIAGRAM ................................. 6E-10
GROUND POINT CHART G.EXP (LHD)
WITHOUT EUROPE, ISRAEL, TURKEY (1/4). 6E-13
GROUND POINT CHART G.EXP (LHD) (2/4) .. 6E-14
GROUND POINT CHART G.EXP (LHD) (3/4) .. 6E-15
GROUND POINT CHART G.EXP (LHD) (4/4) .. 6E-16
GROUND POINT CHART G.EXP (RHD) (1/4) . 6E-17
GROUND POINT CHART G.EXP (RHD) (2/4) . 6E-18
GROUND POINT CHART G.EXP (RHD) (3/4) . 6E-19
GROUND POINT CHART G.EXP (RHD) (4/4) . 6E-20
LOCATION ........................................................ 6E-21
CABLE HARNESS & CONNECTOR
LOCATION ....................................................... 6E-22
CONNECTOR LIST ........................................... 6E-27
RELAY AND FUSE ............................................ 6E-30
RELAY AND FUSE BOX LOCATION
(LHD&RHD) ................................................... 6E-30
RELAY AND FUSE BOX LOCATION
(LHD&RHD) ................................................... 6E-31
FUSE AND RELAY LOCATION
(LHD&RHD) ................................................... 6E-32
ECM WIRING DIAGRAM (1/10) ........................ 6E-33
ECM WIRING DIAGRAM (2/10) ........................ 6E-34
ECM WIRING DIAGRAM (3/10) ........................ 6E-35
ECM WIRING DIAGRAM (4/10) ........................ 6E-36
ECM WIRING DIAGRAM (5/10) ........................ 6E-37
ECM WIRING DIAGRAM (6/10) ........................ 6E-38
ECM WIRING DIAGRAM (7/10) ........................ 6E-39
ECM WIRING DIAGRAM (8/10) ........................ 6E-40
ECM WIRING DIAGRAM (9/10) ........................ 6E-41
ECM WIRING DIAGRAM (10/10) ...................... 6E-42
ECM CONNECTOR PIN ASSIGNMENT
& OUTPUT SIGNAL ......................................... 6E-43
GENERAL DESCRIPTION FOR ECM AND
SENSORS ........................................................ 6E-51
Mass Air Flow (MAF) Sensor & Intake Air
Temperature (IAT) Sensor ............................. 6E-52
Throttle Position Sensor (TPS)....................... 6E-52
Idle Air Control (IAC) Valve ............................ 6E-53
Camshaft Position (CMP) Sensor .................. 6E-53
Crankshaft Position (CKP) Sensor ................. 6E-54
Engine Coolant Temperature (ECT) Sensor .. 6E-54
Vehicle Speed Sensor (VSS) ......................... 6E-55
Heated Oxygen (O
2) Sensor........................... 6E-55
GENERAL DESCRIPTION FOR FUEL
METERING....................................................... 6E-56
GENERAL DESCRIPTION FOR ELECTRONIC
IGNITION SYSTEM IGNITION
COILS & CONTROL ......................................... 6E-58
GENERAL DESCRIPTION FOR EVAPORATIVE
EMISSION SYSTEM ........................................ 6E-61
GENERAL DESCRIPRION FOR EXHAUST
GAS RECIRCULATION (EGR) SYSTEM......... 6E-62
ISUZU STRATEGY BASED DIAGNOSTICS .... 6E-63
Diagnostic Thought Process .......................... 6E-64
1. Verify the Complaint ................................... 6E-64
2. Perform Preliminary Checks....................... 6E-64
3. Check Bulletins and Troubleshooting
Hints ........................................................... 6E-65
4. Perform Service Manual Diagnostic
Checks ....................................................... 6E-65
5a and 5b. Perform Service Manual
Diagnostic Procedures ............................... 6E-65
5c. Technician Self Diagnoses ....................... 6E-65
5d. Intermittent Diagnosis............................ 6E-66
Symptom Simulation Tests.......................... 6E-67
5e. Vehicle Operates as Designed ................. 6E-68
6. Re-Examine the Complaint ........................ 6E-68
7. Repair and Verify Fix .................................. 6E-68
GENERAL SERVICE INFORMATION .............. 6E-69
Aftermarket Electrical and Vacuum
Equipment ..................................................... 6E-69
Electrostatic Discharge Damage .................... 6E-69
6E-2 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Visual/Physical Engine Compartment
Inspection ...................................................... 6E-74
Basic Knowledge of Tools Required............... 6E-71
Serial Data Communications .......................... 6E-71
On-Board Diagnostic (OBD) ........................... 6E-71
Comprehensive Component Monitor
Diagnostic Operation ..................................... 6E-71
The Diagnostic Executive ............................... 6E-72
Verifying Vehicle Repair ................................. 6E-73
Reading Flash Diagnostic Trouble Codes ...... 6E-73
Reading Diagnostic Trouble Codes Using
a Tech 2......................................................... 6E-73
On-Board Diagnosis (Self-Diagnosis)............. 6E-74
Diagnosis with Tech 2 .................................... 6E-75
TYPICAL SCAN DATA & DEFINITIONS
(ENGINE DATA) ............................................... 6E-79
TYPICAL SCAN DATA & DEFINITIONS
(O2 SENSOR DATA)........................................ 6E-81
MISCELLANEOUS TEST .................................. 6E-83
PLOTTING SNAPSHOT GRAPH ...................... 6E-85
Plotting Graph Flow Chart (Plotting graph
after obtaining vehicle information)................ 6E-86
Flow Chart for Snapshot Replay
(Plotting Graph) ............................................. 6E-87
SNAPSHOT DISPLAY WITH TIS2000.............. 6E-88
SERVICE PROGRAMMING SYSTEM (SPS).... 6E-91
HOW TO USE BREAKER BOX ........................ 6E-94
ON-BOARD DIAGNOSTIC (OBD) SYSTEM
CHECK ............................................................. 6E-97
NO CHECK ENGINE LAMP (MIL)..................... 6E-101
CHECK ENGINE LAMP (MIL) "ON" STEADY ... 6E-104
FUEL INJECTOR COIL TEST PROCEDURE
AND FUEL INJECTOR BALANCE
TEST PROCEDURE ......................................... 6E-106
FUEL SYSTEM ELECTRICAL TEST ................ 6E-111
FUEL SYSTEM DIAGNOSIS ............................. 6E-116
A/C SYSTEM CIRCUIT DIAGNOSIS ................ 6E-122
ECM DIAGNOSTIC TROUBLE CODES (DTC) 6E-130
MULTIPLE DTC SETS TROUBLESHOOTING
AIDS ................................................................. 6E-142
DTC P0101 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT
RANGE/PERFORMANCE ................................ 6E-146
DTC P0102 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT LOW INPUT ... 6E-149
DTC P0103 (FLASH CODE 61) MASS
AIR FLOW SENSOR CIRCUIT HIGH INPUT .. 6E-154
DTC P0112 (FLASH CODE 23) INTAKE AIR
TEMPERATURE (IAT) SENSOR LOW
INPUT ............................................................... 6E-158 DTC P0113 (FLASH CODE 23) INTAKE AIR
TEMPERATURE (IAT) SENSOR HIGH
INPUT ............................................................... 6E-163
DTC P0117 (FLASH CODE 14) ENGINE
COOLANT TEMPERATURER (ECT)
SENSOR LOW INPUT ..................................... 6E-168
DTC P0118 (FLASH CODE 14) ENGINE
COOLANT TEMPERATURER (ECT)
SENSOR HIGH INPUT..................................... 6E-173
DTC P0121 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
RANGE/PERFORMANCE ................................ 6E-179
DTC P0122 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
LOW INPUT ..................................................... 6E-183
DTC P0123 (FLASH CODE 21) THROTTLE
POSITION SENSOR (TPS) CIRCUIT
HIGH INPUT ..................................................... 6E-188
DTC P0131 (FLASH CODE 15) O2 SENSOR
CIRCUIT LOW VOLTAGE
(BANK 1 SENSOR 1) ....................................... 6E-193
DTC P0151 (FLASH CODE 15) O2 SENSOR
CIRCUIT LOW VOLTAGE
(BANK 2 SENSOR 1) ....................................... 6E-193
DTC P0132 (FLASH CODE 15) O2 SENSOR
CIRCUIT HIGH VOLTAGE
(BANK 1 SENSOR 1) ....................................... 6E-201
DTC P0152 (FLASH CODE 15) O2
SENSOR CIRCUIT HIGH VOLTAGE
(BANK 2 SENSOR 1) ....................................... 6E-201
DTC P0134 (FLASH CODE 15) O2 SENSOR
CIRCUIT NO ACTIVITY DETECTED
(BANK 1 SENSOR 1) ....................................... 6E-207
DTC P0154 (FLASH CODE 15) O2 SENSOR
CIRCUIT NO ACTIVITY
DETECTED (BANK 2 SENSOR 1) ................... 6E-207
DTC P0171 (FLASH CODE 44) O2 SENSOR
SYSTEM TOO LEAN (BANK 1) ....................... 6E-211
DTC P0174 (FLASH CODE 44) O2 SENSOR
SYSTEM TOO LEAN (BANK 2) ....................... 6E-211
DTC P0172 (FLASH CODE 45) O2 SENSOR
SYSTEM TOO RICH (BANK 1) ........................ 6E-216
DTC P0175 (FLASH CODE 45) O2 SENSOR
SYSTEM TOO RICH (BANK 2) ........................ 6E-216
DTC P1171 (FLASH CODE 44) FUEL
SUPPLY SYSTEM LEAN DURING POWER
ENRICHMENT (TYPE A) ................................. 6E-221
DTC P1172 (FLASH CODE 44) FUEL SUPPLY
SYSTEM LEAN DURING POWER
ENRICHMENT (TYPE B) ................................. 6E-221
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-27
CONNECTOR LIST
No. Connector face No. Connector face
B-24
Green
Meter-B C-108
WhiteJ/B E1
B-56
White
J/B I4 C-109
SilverBody-LH ; ground
B-58
Black
Check connector E-2
Magnetic clutch
B-62
White
Ignition switch (IGSUB : G1) E-6
Fuel injector
B-63
White
Ignition switch (IGSUB : G2) E-7
Fuel injector
B-68
Immobilizer E-8
Fuel injector
C-2
Silver
Engine room-RH ground E-9
Fuel injector
C-24
Triple pressure switch E-51
Fuel injector
C-94
Gray TCM-(A) E-52
Fuel injector
C-107
White
J/B E2 E-53
Ignition coil
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-47
Signal or Continuity Tester Position Pin
No. B/Box
No. Pin Function Wire
Color
Key SW Off Key SW On Engine IdleEngine
2000rpm ECM
Connection Range (+) (-)
B16 B16 Idle Air Control
(IAC) Valve
Coil A Low BLU/
RED Less than 1V Less than 1V / 10-14V Connect DC V B16 GND
B17 B17 Idle Air Control
(IAC) Valve
Coil B Low BLU/
BLKLess than 1V Less than 1V / 10-14V Connect DC V B17 GND
B18 B18 Check Engine
Lamp
(Immobilizer
Control Unit
Terminal B7) BRN/
YELLess than 1V Less than 1VLamp is turned on:
Less than 1V
Lamp is turned off: 10-14VConnect DC V B18 GND
B19 B19 Fuel Pump
Relay GRN/
WHT Less than 1V While relay is
activated:
10-14V
Relay is not
activated:
Less than 1V10-14V Connect DC V B19 GND
B20 B20 Mass Air Flow
(MAF) Sensor BLK/
YELLess than 1V Approx. 0.47VApprox. 1.5V
at 750 rpmApprox. 2V Connect DC V B20 GND
B21 B21 Bank 1 Oxygen
Sensor Signal PNK Less than 1V Approx. 0.4V 0.1 - 0.9V Connect DC V B21 B22
B22 B22 Bank 1 Oxygen
Sensor Ground BLU/
YELContinuity
with ground - - - Connect Ohm B22 GND
B23 B23 Bank 2 Oxygen
Sensor Signal RED Less than 1V Approx. 0.4V 0.1 - 0.9V Connect DC V B23 B24
B24 B24 Bank 2 Oxygen
Sensor Ground BLU/
BLKContinuity
with ground - - - Connect Ohm B24 GND
B25 B25 To Data Link
Connector
No.6 BLK/
GRN - - - - - - - -
B26 B26 Throttle
Position
Sensor (TPS)
Signal BLU Less than 1V Approx. 0.5V Approx. 0.6V Connect DC V B26 B39
B27 B27 TPS & Cam
Position
Sensor +5V
Supply GRN Less than 1V Approx. 5V Connect DC V B27 B39
B28 B28 Camshaft
Position (CMP)
Sensor Signal BLU - - Wave form - - - -
B29 B29 Inhibitor Switch
(AT Only) BLK Less than 1V P or N range: Less than 1V
Other than P or N range: 10-14V Connect DC V B29 GND
B30 B30 Power Steering
Pressure
Switch GRN/
YELLess than 1V Pressure switch is turned on: Less than 1V
Pressure Switch is turned off: 10-14V Connect DC V B30 GND
B31 B31 A/C Thermo
Relay GRN/
BLKLess than 1V A/C request is activated: 10-14V
A/C request is not activated: Less than 1VConnect DC V B31 GND
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-59
Carbon fouling of the spark plug is indicated by dry,
black carbon (soot) deposits on the portion of the spark
plug in the cylinder. Excessive idling and slow speeds
under light engine loads can keep the spark plug
temperatures so low that these deposits are not burned
off. Very rich fuel mixtures or poor ignition system
output may also be the cause. Refer to DTC P0172.
Oil fouling of the spark plug is indicated by wet oily
deposits on the portion of the spark plug in the cylinder,
usually with little electrode wear. This may be caused by
oil during break-in of new or newly overhauled engines.
Deposit fouling of the spark plug occurs when the
normal red-brown, yellow or white deposits o
f
combustion by products become sufficient to cause
misfiring. In some cases, these deposits may melt and
form a shiny glaze on the insulator around the cente
r
electrode. If the fouling is found in only one or two
cylinders, valve stem clearances or intake valve seals
may be allowing excess lubricating oil to enter the
cylinder, particularly if the deposits are heavier on the
side of the spark plug facing the intake valve.
TS23995
Excessive gap means that the air space between the
center and the side electrodes at the bottom of the
spark plug is too wide for consistent firing. This may be
due to excessive wear of the electrode during use.
A
check of the gap size and comparison to the gap
specified for the vehicle in Maintenance and Lubrication
will tell if the gap is too wide. A spark plug gap that is
too small may cause an unstable idle condition.
Excessive gap wear can be an indication of continuous
operation at high speeds or with engine loads, causing
the spark to run too hot. Another possible cause is an
excessively lean fuel mixture.
TS23992
Low or high spark plug installation torque or improper
seating can result in the spark plug running too hot and
can cause excessive center electrode wear. The plug
and the cylinder head seats must be in good contact fo
r
proper heat transfer and spark plug cooling. Dirty or
damaged threads in the head or on the spark plug can
keep it from seating even though the proper torque is
applied. Once spark plugs are properly seated, tighten
them to the torque shown in the Specifications Table.
Low torque may result in poor contact of the seats due
to a loose spark plug. Over tightening may cause the
spark plug shell to be stretched and will result in poo
r
contact between the seats. In extreme cases, exhaus
t
blow-by and damage beyond simple gap wear may
occur.
Cracked or broken insulators may be the result o
f
improper installation, damage during spark plug heat
shock to the insulator material. Upper insulators can be
broken when a poorly fitting tool is used during
installation or removal, when the spark plug is hit from
the outside, or is dropped on a hard surface. Cracks in
the upper insulator may be inside the shell and no
t
visible. Also, the breakage may not cause problems
until oil or moisture penetrates the crack later.
6E-70 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Fuel Quality
Fuel quality is not a new issue for the automotive
industry, but its potential for turning on the MIL (“Check
Engine" lamp) with OBD systems is new.
Fuel additives such as “dry gas" and “octane
enhancers" may affect the performance of the fuel. The
Reed Vapor Pressure of the fuel can also create
problems in the fuel system, especially during the spring
and fall months when severe ambient temperature
swings occur. A high Reed Vapor Pressure could sho
w
up as a Fuel Trim DTC due to excessive canister
loading. High vapor pressures generated in the fuel
tank can also affect the Evaporative Emission
diagnostic as well.
Using fuel with the wrong octane rating for your vehicle
may cause driveability problems. Many of the majo
r
fuel companies advertise that using “premium" gasoline
will improve the performance of your vehicle. Mos
t
premium fuels use alcohol to increase the octane rating
of the fuel. Although alcohol-enhanced fuels may raise
the octane rating, the fuel's ability to turn into vapor in
cold temperatures deteriorates. This may affect the
starting ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
All of the OBD diagnostics have been calibrated to run
with OEM parts.
Aftermarket electronics, such as cellular phones,
stereos, and anti-theft devices, may radiate EMI into the
control system if they are improperly installed. This may
cause a false sensor reading and turn on the MIL
(“Check Engine" lamp).
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition
system. If the ignition system is rain-soaked, it can
temporarily cause engine misfire and turn on the MIL
(“Check Engine" lamp).
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 5Km miles of driving. This type o
f
operation contributes to the fuel fouling of the spark
plugs and will turn on the MIL (“Check Engine" lamp).
Poor Vehicle Maintenance
The sensitivity of OBD diagnostics will cause the MIL
(“Check Engine" lamp) to turn on if the vehicle is no
t
maintained properly. Restricted air filters, fuel filters,
and crankcase deposits due to lack of oil changes o
r
improper oil viscosity can trigger actual vehicle faults
that were not previously monitored prior to OBD. Poo
r
vehicle maintenance can not be classified as a
“non-vehicle fault", but with the sensitivity of OBD
diagnostics, vehicle maintenance schedules must be
more closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an
excessive amount of mud on the wheels, can have the
same effect on crankshaft speed as misfire.
Related System Faults
Many of the OBD system diagnostics will not run if the
ECM detects a fault on a related system or component.
One example would be that if the ECM detected a
Misfire fault, the diagnostics on the catalytic converte
r
would be suspended until Misfire fault was repaired. If
the Misfire fault was severe enough, the catalytic
converter could be damaged due to overheating and
would never set a Catalyst DTC until the Misfire faul
t
was repaired and the Catalyst diagnostic was allowed to
run to completion. If this happens, the customer may
have to make two trips to the dealership in order to
repair the vehicle.
Maintenance Schedule
Refer to the Maintenance Schedule.
Visual/Physical Engine Compartment
Inspection
Perform a careful visual and physical engine
compartment inspection when performing any
diagnostic procedure or diagnosing the cause of an
emission test failure. This can often lead to repairing a
problem without further steps. Use the following
guidelines when performing a visual/physical inspection:
Inspect all vacuum hoses for punches, cuts,
disconnects, and correct routing.
Inspect hoses that are difficult to see behind othe
r
components.
Inspect all wires in the engine compartment fo
r
proper connections, burned or chafed spots, pinched
wires, contact with sharp edges or contact with ho
t
exhaust manifolds or pipes.
6E-106 3.5L ENGINE DRIVEABILITY AND EMISSIONS
FUEL INJECTOR COIL TEST
PROCEDURE AND FUEL INJECTOR
BALANCE TEST PROCEDURE
Test Description
Number(s) below refer to the step number(s) on the
Diagnostic Chart:
2.
Relieve the fuel pressure by connecting the 5–
8840–0378–0 Fuel Pressure Gauge to the fuel
pressure connection on the fuel rail.
CAUTION: In order to reduce the risk of fire and
personal injury, wrap a shop towel around the fuel
pressure connection. The towel will absorb any fuel
leakage that occurs during the connection of the
fuel pressure gauge. Place the towel in an approved
container when the connection of the fuel pressure
gauge is complete.
Place the fuel pressure gauge bleed hose in an
approved gasoline container.
With the ignition switch “OFF," open the valve on
the fuel pressure gauge.
3.
Record the lowest voltage displayed by the DVM
after the first second of the test. (During the first
second, voltage displayed by the DVM may be
inaccurate due to the initial current surge.)
Injector Specifications:
Resistance Ohms Voltage Specification at
10
C
35C (50F
95F)
11.8 – 12.6 5.7 – 6.6
The voltage displayed by the DVM should be within
the specified range.
The voltage displayed by the DVM may increase
throughout the test as the fuel injector windings
warm and the resistance of the fuel injecto
r
windings changes.
An erratic voltage reading (large fluctuations in
voltage that do not stabilize) indicates an
intermittent connection within the fuel injector.
5.
Injector Specifications:
Highest Acceptable
Voltage Reading
Above/Below 35
C/10C
(95
F/50F) Acceptable Subtracted
Value
9.5 Volts 0.6 Volts
7.
The Fuel Injector Balance Test portion of this chart
(Step 7 through Step 11) checks the mechanical
(fuel delivery) portion of the fuel injector. An engine
cool-down period of 10 minutes is necessary in
order to avoid irregular fuel pressure readings due
to “Hot Soak" fuel boiling.