ENGINE ELECTRICAL 1E – 19
DAEWOO V–121 BL4
9. Remove the plunger return spring.
Important : If the solenoid is not removed from the starting
motor, the connector strap terminals must be removed
from the terminal on the solenoid before making these
tests.
10. Test the solenoid windings by checking the current
draw.
1) Check the hold–in windings by connecting an
ammeter in series with a 12–volt battery, the
switch terminal, and to ground.
2) Connect the carbon pile across the battery.
3) Adjust the voltage to 10 volts. The ammeter
reading should be 13 to 19 amperes.Current will
decrease as the windings heat up. Current draw
readings that are over specifications indicate
shorted turns or a ground in the windings of the
solenoid. Both conditions require replacement of
the solenoid. Current draw readings that are un-
der specifications indicate excessive resistance.
No reading indicates an open circuit.
Important : Current will decrease as the windings heat up.
Current draw readings that are over specifications indicate
shorted turns or a ground in the windings of the solenoid.
Both conditions require replacement of the solenoid. Cur-
rent draw readings that are under specifications indicate
excessive resistance. No reading indicates an open cir-
cuit.
11. Check both windings, connecting them according to
the preceding test.
1) Ground the solenoid motor terminal.
2) Adjust the voltage to 10 volts. The ammeter
reading should be 59 to 79 amperes.
3) Check the connections and replace the sole-
noid, if necessary.
1F – 30IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSIS
SYSTEM DIAGNOSIS
DIAGNOSTIC AIDS
If an intermittent problem is evident, follow the guidelines
below.
Preliminary Checks
Before using this section you should have already per-
formed the ”On–Board Diagnostic System Check.”
Perform a thorough visual inspection. This inspection can
often lead to correcting a problem without further checks
and can save valuable time. Inspect for the following con-
ditions:
S Engine control module (ECM) grounds for being
clean, tight, and in their proper location.
S Vacuum hoses for splits, kinks, collapsing and prop-
er connections as shown on the Vehicle Emission
Control Information label. Inspect thoroughly for
any type of leak or restriction.
S Air leaks at the throttle body mounting area and the
intake manifold sealing surfaces.
S Ignition wires for cracks, hardness, proper routing,
and carbon tracking.
S Wiring for proper connections.
S Wiring for pinches or cuts.
Diagnostic Trouble Code Tables
Do not use the Diagnostic Trouble Code (DTC) tables to
try to correct an intermittent fault. The fault must be pres-
ent to locate the problem.
Incorrect use of the DTC tables may result in the unneces-
sary replacement of parts.
Faulty Electrical Connections or Wiring
Most intermittent problems are caused by faulty electrical
connections or wiring. Perform a careful inspection of sus-
pect circuits for the following:
S Poor mating of the connector halves.
S Terminals not fully seated in the connector body.
S Improperly formed or damaged terminals. All con-
nector terminals in a problem circuit should be care-
fully inspected, reformed, or replaced to insure con-
tact tension.S Poor terminal–to–wire connection. This requires
removing the terminal from the connector body.
Road Test
If a visual inspection does not find the cause of the prob-
lem, the vehicle can be driven with a voltmeter or a scan
tool connected to a suspected circuit. An abnormal voltage
or scan tool reading will indicate that the problem is in that
circuit.
If there are no wiring or connector problems found and a
DTC was stored for a circuit having a sensor, except for
DTC P0171 and DTC P0172, replace the sensor.
Fuel System
Some intermittent driveability problems can be attributed
to poor fuel quality. If a vehicle is occasionally running
rough, stalling, or otherwise performing badly, ask the cus-
tomer about the following fuel buying habits:
S Do they always buy from the same source? If so,
fuel quality problems can usually be discounted.
S Do they buy their fuel from whichever fuel station
that is advertising the lowest price? If so, check the
fuel tank for signs of debris, water, or other contam-
ination.
IDLE LEARN PROCEDURE
Whenever the battery cables, the engine control module
(ECM), or the ECM fuse is disconnected or replaced, the
following idle learn procedure must be performed:
1. Turn the ignition ON for 5 seconds.
2. Turn the ignition OFF for 5 seconds.
3. Turn the ignition ON for 5 seconds.
4. Start the engine in park/neutral.
5. Allow the engine to run until the engine coolant is
above 185° F (85°C ).
6. Turn the A/C ON for 10 seconds, if equipped.
7. Turn the A/C OFF for 10 seconds, if equipped.
8. If the vehicle is equipped with an automatic trans-
axle, apply the parking brake. While pressing the
brake pedal, place the transaxle in D (drive).
9. Turn the A/C ON for 10 seconds, if equipped.
10. Turn the A/C OFF for 10 seconds, if equipped.
11. Turn the ignition OFF. The idle learn procedure is
complete.
1F – 58IENGINE CONTROLS
DAEWOO V–121 BL4
MALFUNCTION INDICATOR LAMP ON STEADY
(1.4L/1.6L DOHC)
Circuit Description
When the ignition switch is turned ON, the Malfunction In-
dicator Lamp (MIL) will be turned ON and remain ON until
the engine is running, if no Diagnostic Trouble Codes
(DTCs) are stored. Battery voltage is supplied through the
ignition switch directly to the MIL telltale. The Engine Con-
trol Module (ECM) controls the MIL by providing a ground
path through the MIL control circuit to turn ON the MIL.
Test Description
Number(s) below refer to the step number(s) on the diag-
nostic table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-cords data on the scan tool, if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is stored
in the scan tool for later reference.
2. When the ignition is turned ON, the MIL should be
turned on and remain on until the engine is running
or if an emission related DTC is stored. This step
checks the ability of the ECM to control the MIL.
The scan tool has the ability to command the MIL
on and off.
4. A shorted MIL circuit can be diagnosed with a scan
tool.
6. The replacement ECM must be reprogrammed.
Refer to the latest Techline information for repro-
gramming procedures.
1F – 60IENGINE CONTROLS
DAEWOO V–121 BL4
MALFUNCTION INDICATOR LAMP ON STEADY
(1.8L DOHC)
Circuit Description
When the ignition switch is turned ON, the Malfunction In-
dicator Lamp (MIL) will be turned ON and remain ON until
the engine is running, if no Diagnostic Trouble Codes
(DTCs) are stored. Battery voltage is supplied through the
ignition switch directly to the MIL telltale. The Engine Con-
trol Module (ECM) controls the MIL by providing a ground
path through the MIL control circuit to turn ON the MIL.
Test Description
Number(s) below refer to the step number(s) on the diag-
nostic table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-cords data on the scan tool, if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is stored
in the scan tool for later reference.
2. When the ignition is turned ON, the MIL should be
turned on and remain on until the engine is running
or if an emission related DTC is stored. This step
checks the ability of the ECM to control the MIL.
The scan tool has the ability to command the MIL
on and off.
4. A shorted MIL circuit can be diagnosed with a scan
tool.
6. The replacement ECM must be reprogrammed.
Refer to the latest Techline information for repro-
gramming procedures.
1F – 106IENGINE CONTROLS
DAEWOO V–121 BL4
DATA LINK CONNECTOR DIAGNOSIS (1.4L/1.6L DOHC)
Circuit Description
The provision for communicating with the Engine Control
Module (ECM) is the Data Link Connector (DLC). It is lo-
cated under the instrument panel. The DLC is used to con-
nect the scan tool. Battery power and ground is supplied
for the scan tool through the DLC. The Keyword 2000 seri-
al data circuit to the DLC allows the ECM to communicate
with the scan tool. A Universal Asynchronous Receiver
Transmitter (UART) serial data line is used to communi-
cate with the other modules such as the Electronic Brake
Control Module (EBCM), the Supplemental Inflatable Re-
straint (SIR) system. and the Instrument Panel Cluster.
Diagnostic Aids
Ensure that the correct application (model line, car year,
etc.) has been selected on the scan tool. If communication
still cannot be established, try the scan tool on another ve-
hicle to ensure that the scan tool or cables are not the
cause of the condition.
An intermittent may be caused by a poor connection,
rubbed through wire insulation, or a broken wire inside the
insulation.
Any circuitry that is suspected of causing an intermittent
complaint should be thoroughly checked for the following
conditions:
S Backed–out terminals.S Improper mating of terminals.
S Broken locks.
S Improperly formed or damaged terminals.
S Poor terminal–to–wiring connection.
S Physical damage to the wiring harness.
S Corrosion.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Unlike the UART serial data circuit, the only time a
Class II serial data circuit has any voltage on it is
when a scan tool asks the ECM for information and
sends the information out.
5. Locate and repair any shorts that may have caused
the fuse to open before replacement, if the no volt-
age condition was due to an open fuse.
10. The scan tool or associated cables could be mal-
functioning. Refer to the scan tool’s manual for re-
pair information.
1F – 108IENGINE CONTROLS
DAEWOO V–121 BL4
DATA LINK CONNECTOR DIAGNOSIS (1.8L DOHC)
Circuit Description
The provision for communicating with the Engine Control
Module (ECM) is the Data Link Connector (DLC). It is lo-
cated under the instrument panel. The DLC is used to con-
nect the scan tool. Battery power and ground is supplied
for the scan tool through the DLC. The Keyword 2000 seri-
al data circuit to the DLC allows the ECM to communicate
with the scan tool. A Universal Asynchronous Receiver
Transmitter (UART) serial data line is used to communi-
cate with the other modules such as the Electronic Brake
Control Module (EBCM), the Supplemental Inflatable Re-
straint (SIR) system. and the Instrument Panel Cluster.
Diagnostic Aids
Ensure that the correct application (model line, car year,
etc.) has been selected on the scan tool. If communication
still cannot be established, try the scan tool on another ve-
hicle to ensure that the scan tool or cables are not the
cause of the condition.
An intermittent may be caused by a poor connection,
rubbed through wire insulation, or a broken wire inside the
insulation.
Any circuitry that is suspected of causing an intermittent
complaint should be thoroughly checked for the following
conditions:
S Backed–out terminals.S Improper mating of terminals.
S Broken locks.
S Improperly formed or damaged terminals.
S Poor terminal–to–wiring connection.
S Physical damage to the wiring harness.
S Corrosion.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
2. Unlike the UART serial data circuit, the only time a
Class II serial data circuit has any voltage on it is
when a scan tool asks the ECM for information and
sends the information out.
5. Locate and repair any shorts that may have caused
the fuse to open before replacement, if the no volt-
age condition was due to an open fuse.
10. The scan tool or associated cables could be mal-
functioning. Refer to the scan tool’s manual for re-
pair information.
ENGINE CONTROLS 1F – 129
DAEWOO V–121 BL4
DTC P0118 – Engine Coolant Temperature Sensor High Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Run the engine until it reaches operating tem-
perature.
Does the scan tool show the ECT sensor reading
within the value specified?80~110°C
(176~260°F)Go to
”Diagnostic
Aids”Go to Step 3
31. Turn the ignition switch to LOCK.
2. Disconnect the ECT sensor connector.
3. Turn the ignition switch to ON.
Does the scan tool show the ECT sensor reading
within the value specified?–30°CGo to Step 4Go to Step 6
41. Jumper the ECT sensor signal circuits at termi-
nal 1 and 2.
2. Turn the ignition switch to ON.
Does the scan tool show the ECT sensor reading
within the value specified?180°C
(356°F)Go to Step 5Go to Step 6
51. Replace the ECT sensor.
2. Clear any DTCs from the ECM.
3. Perform the diagnostic system check.
Is the replacement complete?–System OK–
6Measure the voltage between ECT terminal 1 and
ground.
Does the voltage measure within the value speci-
fied?4.5–5.5VGo to Step 7Go to Step 8
71. Turn the ignition switch to LOCK.
2. Disconnect the ECM wiring connector.
3. Check for a faulty connector or terminals at the
ECT sensor connector terminal 2 and the ECM
connector terminal 19 for an open or short to
battery voltage.
Is the problem found?–Go to Step 8Go to Step 9
81. Turn the ignition switch to LOCK.
2. Repair the wire of the connector terminals as
needed.
3. Clear any DTCs from the ECM.
4. Run the engine until it reaches operating tem-
perature.
5. Perform the diagnostic system check.
Is the repair complete?–System OK–
ENGINE CONTROLS 1F – 141
DAEWOO V–121 BL4
DTC P0132 – Front Heated Oxygen Sensor High Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Turn the ignition switch to ON, with the engine
OFF.
2. Install a scan tool.
3. Engine at operating temperature.
4. Run the engine at 1,200rpm.
Does the scan tool the upstream oxygen(O2) sen-
sor1 voltage within the value specified?More than
1.2VGo to Step 3Go to Step 6
31. Turn the ignition switch to LOCK.
2. Disconnect the O2 sensor connector and en-
gine control module (ECM) connector.
3. Check the O2 sensor wire between the O2
sensor and ECM connector terminal 44 for
short to battery voltage.
Is the problem found?–Go to Step 4Go to Step 5
41. Repair the wire of the connector terminal as
needed.
2. Clear the DTCs from the ECM.
3. Road tests the vehicle.
4. Perform the diagnostic system check.
Is the repair complete?–System OK–
51. Turn the ignition switch to LOCK.
2. Replace the O2 sensor.
3. Road tests the vehicle.
4. Perform the diagnostic system check.
Is the replacement complete?–Go to Step 7–
61. Turn the ignition switch to LOCK.
2. Replace the ECM.
3. Road tests the vehicle.
4. Perform the diagnostic system check.
Is the replacement complete?–Go to Step 7–
7Check if any additional DTCs are set.
Are any DTCs displaced that have not been diag-
nosed?–Go to applica-
ble DTC tableSystem OK