1F–6 ENGINE CONTROLS
DAEWOO M-150 BL2
pors. Fresh air from the air cleaner is supplied to the
crankcase. The fresh air is mixed with blowby gases
which then pass through a vacuum hose into the intake
manifold.
Periodically inspect the hoses and the clamps. Replace
any crankcase ventilation components as required.
A restricted or plugged PCV hose may cause the follow-
ing conditions:
Rough idle
Stalling or low idle speed
Oil leaks
Oil in the air cleaner
Sludge in the engine
A leaking PCV hose may cause the following conditions:
Rough idle
Stalling
High idle speed
ENGINE COOLANT TEMPERATURE
SENSOR
The Engine Coolant Temperature (ECT) sensor is a
thermistor (a resistor which changes value based on
temperature) mounted in the engine coolant stream.
Low coolant temperature produces a high resistance
(100,000 ohms at –40C [–40F]) while high tempera-
ture causes low resistance (70 ohms at 130C [266F]).
The Engine Control Module (ECM) supplies 5 volts to
the ECT sensor through a resistor in the ECM and mea-
sures the change in voltage. The voltage will be high
when the engine is cold and low when the engine is hot.
By measuring the change in voltage, the ECM can de-
termine the coolant temperature. The engine coolant
temperature affects most of the systems that the ECM
controls. A failure in the ECT sensor circuit should set a
Diagnostic Trouble Code (DTC) P0117 or P0118. Re-
member, these DTC indicate a failure in the ECT circuit,
so proper use of the chart will lead either to repairing a
wiring problem or to replacing the sensor to repair a
problem properly.
THROTTLE POSITION SENSOR
The Throttle Position (TP) sensor is a potentiometer
connected to the throttle shaft of the throttle body. The
TP sensor electrical circuit consists of a 5-volt supply
line and a ground line, both provided by the Engine Con-
trol Module (ECM). The ECM calculates the throttle
position by monitoring the voltage on this signal line. The
TP sensor output changes as the accelerator pedal is
moved, changing the throttle valve angle. At a closed
throttle position, the output of the TP sensor is low,
about 0.4–0.8 volt. As the throttle valve opens, the out-
put increases so that, at Wide Open Throttle (WOT), the
output voltage will be about 4.5–5 volts.The ECM can determine fuel delivery based on throttle
valve angle (driver demand). A broken or loose TP sen-
sor can cause intermittent bursts of fuel from the injector
and an unstable idle, because the ECM thinks the
throttle is moving. A problem in any of the TP sensor cir-
cuits should set a Diagnostic Trouble Code (DTC)
P0122 or P0123. Once the DTC is set, the ECM will sub-
stitute a default value for the TP sensor and some ve-
hicle performance will return.
CATALYST MONITOR OXYGEN
SENSORS
Three-way catalytic converters are used to control emis-
sions of hydrocarbons (HC), carbon monoxide (CO),
and oxides of nitrogen (NOx). The catalyst within the
converters promotes a chemical reaction. This reaction
oxidizes the HC and CO present in the exhaust gas and
converts them into harmless water vapor and carbon
dioxide. The catalyst also reduces NOx by converting it
to nitrogen. The ECM can monitor this process using the
oxygen sensor (O2S) and heated oxygen sensor
(HO2S). These sensors produce an output signal which
indicates the amount of oxygen present in the exhaust
gas entering and leaving the three-way converter. This
indicates the catalyst’s ability to efficiently convert ex-
haust gasses. If the catalyst is operating efficiently, the
O2S signals will be more active than the signals pro-
duced by the HO2S. The catalyst monitor sensors oper-
ate the same way as the fuel control sensors. The
sensors’ main function is catalyst monitoring, but they
also have a limited role in fuel control. If a sensor output
indicates a voltage either above or below the 450 mV
bias voltage for an extended period of time, the Engine
Control Module (ECM) will make a slight adjustment to
fuel trim to ensure that fuel delivery is correct for catalyst
monitoring.
A problem with the O2S circuit will set DTC P0131,
P0132, P0133 or P0134 depending on the special condi-
tion. A problem with the HO2S signal will set DTC
P0137, P0138, P0140 or P0141 depending on the spe-
cial condition.
A fault in the heated oxygen sensor (HO2S) heater ele-
ment or its ignition feed or ground will result in lower oxy-
gen sensor response. This may cause incorrect catalyst
monitor diagnostic results.
ELECTRIC EXHAUST GAS
RECIRCULATION VALVE
The Electric Exhaust Gas Recirculation (EEGR) system
is used on engines equipped with an automatic trans-
axle to lower oxides of nitrogen (NOx) emission levels
caused by high combustion temperature. The main ele-
ment of the system is the EEGR valve, controlled electri-
cally by the Engine Control Module (ECM). The EEGR
valve feeds small amounts of exhaust gas into the intake
ENGINE CONTROLS 1F–7
DAEWOO M-150 BL2
manifold to decrease combustion temperature. The
amount of exhaust gas recirculated is controlled by vari-
ations in vacuum and exhaust back pressure. If too
much exhaust gas enters, combustion will not take
place. For this reason, very little exhaust gas is allowed
to pass through the valve, especially at idle.
The EEGR valve is usually open under the following
conditions:
Warm engine operation.
Above idle speed.
Results of Incorrect Operation
Too much EEGR flow tends to weaken combustion,
causing the engine to run roughly or to stop. With too
much EEGR flow at idle, cruise, or cold operation, any of
the following conditions may occur:
The engine stops after a cold start.
The engine stops at idle after deceleration.
The vehicle surges during cruise.
Rough idle.
If the EEGR valve stays open all the time, the engine
may not idle. Too little or no EEGR flow allows combus-
tion temperatures to get too high during acceleration
and load conditions. This could cause the following con-
ditions:
Spark knock (detonation)
Engine overheating
Emission test failure
INTAKE AIR TEMPERATURE
SENSOR
The Intake Air Temperature (IAT) sensor is a thermistor,
a resistor which changes value based on the tempera-
ture of the air entering the engine. Low temperature pro-
duces a high resistance (100 kohms at –40C [–40F]),
while high temperature causes a low resistance (70
ohms at 130C [266F]).
The Engine Control Module (ECM) provides 5 volts to
the IAT sensor through a resistor in the ECM and mea-
sures the change in voltage to determine the IAT. The
voltage will be high when the manifold air is cold and low
when the air is hot. The ECM knows the intake IAT by
measuring the voltage.
The IAT sensor is also used to control spark timing when
the manifold air is cold.
A failure in the IAT sensor circuit sets a diagnostic
trouble code P0112 or P0113.
IDLE AIR CONTROL VALVE
Notice: Do not attempt to remove the protective cap
and readjust the stop screw. Misadjustment may result
in damage to the Idle Air Control (IAC) valve or to the
throttle body.The IAC valve is mounted on the throttle body where it
controls the engine idle speed under the command of
the Engine Control Module (ECM). The ECM sends volt-
age pulses to the IAC valve motor windings, causing the
IAC valve pintle to move in or out a given distance (a
step or count) for each pulse. The pintle movement con-
trols the airflow around the throttle valves which, in turn,
control the engine idle speed.
The desired idle speeds for all engine operating condi-
tions are programmed into the calibration of the ECM.
These programmed engine speeds are based on the
coolant temperature, the park/neutral position switch
status, the vehicle speed, the battery voltage, and the
A/C system pressure, if equipped.
The ECM “learns” the proper IAC valve positions to
achieve warm, stabilized idle speeds (rpm) desired for
the various conditions (park/neutral or drive, A/C on or
off, if equipped). This information is stored in ECM ”keep
alive” memories (information is retained after the ignition
is turned off). All other IAC valve positioning is calcu-
lated based on these memory values. As a result, en-
gine variations due to wear and variations in the
minimum throttle valve position (within limits) do not af-
fect engine idle speeds. This system provides correct
idle control under all conditions. This also means that
disconnecting power to the ECM can result in incorrect
idle control or the necessity to partially press the accel-
erator when starting until the ECM relearns idle control.
Engine idle speed is a function of total airflow into the
engine based on the IAC valve pintle position, the
throttle valve opening, and the calibrated vacuum loss
through accessories. The minimum throttle valve posi-
tion is set at the factory with a stop screw. This setting
allows enough airflow by the throttle valve to cause the
IAC valve pintle to be positioned a calibrated number of
steps (counts) from the seat during “controlled” idle op-
eration. The minimum throttle valve position setting on
this engine should not be considered the “minimum idle
speed,” as on other fuel injected engines. The throttle
stop screw is covered with a plug at the factory following
adjustment.
If the IAC valve is suspected as being the cause of im-
proper idle speed, refer to “Idle Air Control System
Check” in this section.
MANIFOLD ABSOLUTE PRESSURE
SENSOR
The Manifold Absolute Pressure (MAP) sensor mea-
sures the changes in the intake manifold pressure which
result from engine load and speed changes and con-
verts these to a voltage output.
A closed throttle on engine coast down produces a rela-
tively low MAP output. MAP is the opposite of vacuum.
When manifold pressure is high, vacuum is low. The
MAP sensor is also used to measure barometric pres-
sure. This is performed as part of MAP sensor calcula-
1F–8 ENGINE CONTROLS
DAEWOO M-150 BL2
tions. With the ignition ON and the engine not running,
the Engine Control Module (ECM) will read the manifold
pressure as barometric pressure and adjust the air/fuel
ratio accordingly. This compensation for altitude allows
the system to maintain driving performance while hold-
ing emissions low. The barometric function will update
periodically during steady driving or under a wide open
throttle condition. In the case of a fault in the barometric
portion of the MAP sensor, the ECM will set to the de-
fault value.
A failure in the MAP sensor circuit sets a diagnostic
trouble codes P0107, P0108 or P0106.
ENGINE CONTROL MODULE
The Engine Control Module (ECM), is the control center
of the fuel injection system. It constantly looks at the in-
formation from various sensors and controls the sys-
tems that affect the vehicle’s performance. The ECM
also performs the diagnostic functions of the system. It
can recognize operational problems, alert the driver
through the Malfunction Indicator Lamp (MIL), and store
diagnostic trouble code(s) which identify the problem
areas to aid the technician in making repairs.
There are no serviceable parts in the ECM. The calibra-
tions are stored in the ECM in the Programmable Read
Only Memory (PROM).
The ECM supplies either 5 or 12 volts to power the sen-
sors or switches. This is done through resistance in the
ECM which are so high in value that a test light will not
come on when connected to the circuit. In some cases,
even an ordinary shop voltmeter will not give an accu-
rate reading because its resistance is too low. You must
use a digital voltmeter with a 10 megohm input imped-
ance to get accurate voltage readings. The ECM con-
trols output circuits such as the fuel injectors, the Idle Air
Control (IAC) valve, the A/C clutch relay, etc., by control-
ling the ground circuit through transistors or a device
called a “quad-driver.”
FUEL INJECTOR
The Multi-port Fuel Injection (MFI) assembly is a sole-
noid-operated device controlled by the Engine Control
Module (ECM) that meters pressurized fuel to a single
engine cylinder. The ECM energizes the fuel injector or
solenoid to a normally closed ball or pintle valve. This al-
lows fuel to flow into the top of the injector, past the ball
or pintle valve, and through a recessed flow director
plate at the injector outlet.
The director plate has six machined holes that control
the fuel flow, generating a conical spray pattern of finely
atomized fuel at the injector tip. Fuel from the tip is di-
rected at the intake valve, causing it to become further
atomized and vaporized before entering the combustion
chamber. A fuel injector which is stuck partially open
would cause a loss of fuel pressure after the engine is
shut down. Also, an extended crank time would be no-
ticed on some engines. Dieseling could also occur be-cause some fuel could be delivered to the engine after
the ignition is turned off.
FUEL CUT-OFF SWITCH
The fuel cutoff switch is a safety device. In the event of a
collision or a sudden impact, it automatically cuts off the
fuel supply and activates the door lock relay. After the
switch has been activated, it must be reset in order to
restart the engine. Reset the fuel cutoff switch by press-
ing the rubber top of the switch. The switch is located
near the right side of the passenger’s seat.
KNOCK SENSOR
The knock sensor detects abnormal knocking in the en-
gine. The sensor is mounted in the engine block near the
cylinders. The sensor produces an AC output voltage
which increases with the severity of the knock. This sig-
nal is sent to the Engine Control Module (ECM). The
ECM then adjusts the ignition timing to reduce the spark
knock.
VARIABLE RELUCTANCE (VR)
SENSOR
The variable reluctance sensor is commonly refered to
as an “inductive” sensor.
The VR wheel speed sensor consists of a sensing unit
fixed to the left side front macpherson strut, for non-ABS
vehicle.
The ECM uses the rough road information to enable or
disable the misfire diagnostic. The misfire diagnostic
can be greatly affected by crankshaft speed variations
caused by driving on rough road surfaces. The VR sen-
sor generates rough road information by producing a
signal which is proportional to the movement of a small
metal bar inside the sensor.
If a fault occurs which causes the ECM to not receive
rough road information between 30 and 70 km/h (1.8
and 43.5 mph), Diagnostic Trouble Code (DTC) P1391
will set.
OCTANE NUMBER CONNECTOR
The octane number connector is a jumper harness that
signal to the engine control module (ECM) the octane
rating of the fuel.
The connector is located on the next to the ECM. There
are two different octane number connector settings
available. The vehicle is shipped from the factory with a
label attached to the jumper harness to indicate the oc-
tane rating setting of the ECM. The ECM will alter fuel
delivery and spark timing based on the octane number
setting. The following table shows which terminal to
jump on the octane number connector in order to
achieve the correct fuel octane rating. Terminal 2 is
ground on the octane number connector. The find the
1F–10 ENGINE CONTROLS
DAEWOO M-150 BL2
fuels use alcohol to increase the octane rating of the
fuel. Although alcohol-enhanced fuels may raise the oc-
tane rating, the fuel’s ability to turn into vapor in cold
temperatures deteriorates. This may affect the starting
ability and cold driveability of the engine.
Low fuel levels can lead to fuel starvation, lean engine
operation, and eventually engine misfire.
Non-OEM Parts
The EOBD system has been calibrated to run with Origi-
nal Equipment Manufacturer (OEM) parts. Something
as simple as a high performance-exhaust system that
affects exhaust system back pressure could potentially
interfere with the operation of the Electric Exhaust Gas
Recirculation (EEGR) valve and thereby turn on the
MIL. Small leaks in the exhaust system near the heated
oxygen sensor (HO2S) can also cause the MIL to turn
on.
Aftermarket electronics, such as cellular phones, ster-
eos, and anti-theft devices, may radiate Electromagnet-
ic Interference (EMI) into the control system if they are
improperly installed. This may cause a false sensor
reading and turn on the MIL.
Environment
Temporary environmental conditions, such as localized
flooding, will have an effect on the vehicle ignition sys-
tem. If the ignition system is rain-soaked, it can tempo-
rarily cause engine misfire and turn on the MIL.
Vehicle Marshaling
The transportation of new vehicles from the assembly
plant to the dealership can involve as many as 60 key
cycles within 2 to 3 miles of driving. This type of opera-
tion contributes to the fuel fouling of the spark plugs and
will turn on the MIL with a set DTC P0300.
Poor Vehicle Maintenance
The sensitivity of the EOBD will cause the MIL to turn on
if the vehicle is not maintained properly. Restricted air fil-
ters, fuel filters, and crankcase deposits due to lack of oil
changes or improper oil viscosity can trigger actual ve-
hicle faults that were not previously monitored prior to
EOBD. Poor vehicle maintenance can not be classified
as a “non-vehicle fault,” but with the sensitivity of the
EOBD, vehicle maintenance schedules must be more
closely followed.
Severe Vibration
The Misfire diagnostic measures small changes in the
rotational speed of the crankshaft. Severe driveline
vibrations in the vehicle, such as caused by an exces-
sive amount of mud on the wheels, can have the same
effect on crankshaft speed as misfire and, therefore,
may set DTC P0300.
Related System Faults
Many of the EOBD system diagnostics will not run if the
Engine Control Module (ECM) detects a fault on a re-
lated system or component. One example would be thatif the ECM detected a Misfire fault, the diagnostics on
the catalytic converter would be suspended until the
Misfire fault was repaired. If the Misfire fault is severe
enough, the catalytic converter can be damaged due to
overheating and will never set a Catalyst DTC until the
Misfire fault is repaired and the Catalyst diagnostic is al-
lowed to run to completion. If this happens, the custom-
er may have to make two trips to the dealership in order
to repair the vehicle.
SERIAL DATA COMMUNICATIONS
Keyword 2000 Serial Data
Communications
Government regulations require that all vehicle
manufacturers establish a common communication sys-
tem. This vehicle utilizes the “Keyword 2000” commu-
nication system. Each bit of information can have one of
two lengths: long or short. This allows vehicle wiring to
be reduced by transmitting and receiving multiple sig-
nals over a single wire. The messages carried on Key-
word 2000 data streams are also prioritized. If two
messages attempt to establish communications on the
data line at the same time, only the message with higher
priority will continue. The device with the lower priority
message must wait. The most significant result of this
regulation is that it provides scan tool manufacturers
with the capability to access data from any make or
model vehicle that is sold.
The data displayed on the other scan tool will appear the
same, with some exceptions. Some scan tools will only
be able to display certain vehicle parameters as values
that are a coded representation of the true or actual val-
ue. On this vehicle, the scan tool displays the actual val-
ues for vehicle parameters. It will not be necessary to
perform any conversions from coded values to actual
values.
EURO ON-BOARD DIAGNOSTIC
(EOBD)
Euro On-Board Diagnostic Tests
A diagnostic test is a series of steps, the result of which
is a pass or fail reported to the diagnostic executive.
When a diagnostic test reports a pass result, the diag-
nostic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
The diagnostic test has passed during the current
ignition cycle.
The fault identified by the diagnostic test is not cur-
rently active.
When a diagnostic test reports a fail result, the diagnos-
tic executive records the following data:
The diagnostic test has been completed since the last
ignition cycle.
ENGINE CONTROLS 1F–11
DAEWOO M-150 BL2
The fault identified by the diagnostic test is currently
active.
The fault has been active during this ignition cycle.
The operating conditions at the time of the failure.
Remember, a fuel trim Diagnostic Trouble Code (DTC)
may be triggered by a list of vehicle faults. Make use of
all information available (other DTCs stored, rich or lean
condition, etc.) when diagnosing a fuel trim fault.
COMPREHENSIVE COMPONENT
MONITOR DIAGNOSTIC OPERATION
Comprehensive component monitoring diagnostics are
required to monitor emissions-related input and output
powertrain components.
Input Components
Input components are monitored for circuit continuity
and out-of-range values. This includes rationality check-
ing. Rationality checking refers to indicating a fault when
the signal from a sensor does not seem reasonable, i.e.
Throttle Position (TP) sensor that indicates high throttle
position at low engine loads or Manifold Absolute Pres-
sure (MAP) voltage. Input components may include, but
are not limited to, the following sensors:
Vehicle Speed Sensor (VSS).
Crankshaft Position (CKP) sensor.
Throttle Position (TP) sensor.
Engine Coolant Temperature (ECT) sensor.
Camshaft Position (CMP) sensor.
MAP sensor.
In addition to the circuit continuity and rationality check,
the ECT sensor is monitored for its ability to achieve a
steady state temperature to enable closed loop fuel con-
trol.
Output Components
Output components are diagnosed for proper response
to control module commands. Components where func-
tional monitoring is not feasible will be monitored for cir-
cuit continuity and out-of-range values if applicable.
Output components to be monitored include, but are not
limited to the following circuit:
Idle Air Control (IAC) Motor.
Controlled Canister Purge Valve.
A/C relays.
Cooling fan relay.
VSS output.
Malfunction Indicator Lamp (MIL) control.
Refer to “Engine Control Module” and the sections on
Sensors in General Descriptions.
Passive and Active Diagnostic Tests
A passive test is a diagnostic test which simply monitors
a vehicle system or component. Conversely, an activetest, actually takes some sort of action when performing
diagnostic functions, often in response to a failed pas-
sive test. For example, the Electric Exhaust Gas Recir-
culation (EEGR) diagnostic active test will force the
EEGR valve open during closed throttle deceleration
and/or force the EEGR valve closed during a steady
state. Either action should result in a change in manifold
pressure.
Intrusive Diagnostic Tests
This is any Euro On-Board test run by the Diagnostic
Management System which may have an effect on ve-
hicle performance or emission levels.
Warm-Up Cycle
A warm-up cycle means that engine at temperature
must reach a minimum of 70C (160F) and rise at least
22C (40F) over the course of a trip.
Freeze Frame
Freeze Frame is an element of the Diagnostic Manage-
ment System which stores various vehicle information at
the moment an emissions-related fault is stored in
memory and when the MIL is commanded on. These
data can help to identify the cause of a fault.
Failure Records
Failure Records data is an enhancement of the EOBD
Freeze Frame feature. Failure Records store the same
vehicle information as does Freeze Frame, but it will
store that information for any fault which is stored in
Euro On-Board memory, while Freeze Frame stores in-
formation only for emission-related faults that command
the MIL on.
COMMON EOBD TERMS
Diagnostic
When used as a noun, the word diagnostic refers to any
Euro On-Board test run by the vehicle’s Diagnostic Man-
agement System. A diagnostic is simply a test run on a
system or component to determine if the system or com-
ponent is operating according to specification. There are
many diagnostics, shown in the following list:
Misfire.
Oxygen sensors (O2S)
Heated oxygen sensor (HO2S)
Electric Exhaust Gas Recirculation (EEGR)
Catalyst monitoring
Enable Criteria
The term “enable criteria” is engineering language for
the conditions necessary for a given diagnostic test to
run. Each diagnostic has a specific list of conditions
which must be met before the diagnostic will run.
“Enable criteria” is another way of saying “conditions re-
quired.”
ENGINE CONTROLS 1F–15
DAEWOO M-150 BL2
made to enter DTC numbers for tests which the diag-
nostic executive does not recognize, the requested in-
formation will not be displayed correctly and the scan
tool may display an error message. The same applies to
using the DTC trigger option in the Snapshot mode. If an
invalid DTC is entered, the scan tool will not trigger.
Failed Last Test
This message display indicates that the last diagnostic
test failed for the selected DTC. For type A, B and E
DTCs, this message will be displayed during subse-
quent ignition cycles until the test passes or DTCs are
cleared. For type C and type D DTCs, this message will
clear when the ignition is cycled.
Failed Since Clear
This message display indicates that the DTC has failed
at least once within the last 40 warm-up cycles since the
last time DTCs were cleared.
Failed This Ig. (Failed This Ignition)
This message display indicates that the diagnostic test
has failed at least once during the current ignition cycle.
This message will clear when DTCs are cleared or the
ignition is cycled.
History DTC
This message display indicates that the DTC has been
stored in memory as a valid fault. A DTC displayed as a
History fault may not mean that the fault is no longer
present. The history description means that all the con-
ditions necessary for reporting a fault have been met
(maybe even currently), and the information was stored
in the control module memory.
MIL Requested
This message display indicates that the DTC is currently
causing the MIL to be turned ON. Remember that only
type A B and E DTCs can request the MIL. The MIL re-
quest cannot be used to determine if the DTC fault con-
ditions are currently being experienced. This is because
the diagnostic executive will require up to three trips dur-
ing which the diagnostic test passes to turn OFF the
MIL.
Not Run Since CI (Not Run Since Cleared)
This message display indicates that the selected diag-
nostic test has not run since the last time DTCs were
cleared. Therefore, the diagnostic test status (passing
or failing) is unknown. After DTCs are cleared, this mes-
sage will continue to be displayed until the diagnostic
test runs.
Not Run This Ig. (Not Run This Ignition)
This message display indicates that the selected diag-
nostic test has not run during this ignition cycle.
Test Ran and Passed
This message display indicates that the selected diag-
nostic test has done the following:Passed the last test.
Run and passed during this ignition cycle.
Run and passed since DTCs were last cleared.
If the indicated status of the vehicle is “Test Ran and
Passed” after a repair verification, the vehicle is ready to
be released to the customer.
If the indicated status of the vehicle is “Failed This Igni-
tion” after a repair verification, then the repair is incom-
plete and further diagnosis is required.
Prior to repairing a vehicle, status information can be
used to evaluate the state of the diagnostic test, and to
help identify an intermittent problem. The technician can
conclude that although the MIL is illuminated, the fault
condition that caused the code to set is not present. An
intermittent condition must be the cause.
PRIMARY SYSTEM-BASED
DIAGNOSTICS
There are primary system-based diagnostics which
evaluate the system operation and its effect on vehicle
emissions. The primary system-based diagnostics are
listed below with a brief description of the diagnostic
function:
Oxygen Sensor Diagnosis
The fuel control oxygen sensor (O2S) is diagnosed for
the following conditions:
Few switch count (rich to lean or lean to rich).
Slow response (average transient time lean to rich or
rich to lean).
Response time ratio (ratio of average transient time
rich(lean) to lean(rich)).
Inactive signal (output steady at bias voltage approxi-
mately 450 mV).
Signal fixed high.
Signal fixed low.
The catalyst monitor heated oxygen sensor (HO2S) is
diagnosed for the following conditions:
Heater performance (current during IGN on).
Signal fixed low during steady state conditions or
power enrichment (hard acceleration when a rich mix-
ture should be indicated).
Signal fixed high during steady state conditions or de-
celeration mode (deceleration when a lean mixture
should be indicated).
Inactive sensor (output steady at approx. 438 mV).
If the O2S pigtail wiring, connector or terminal are dam-
aged, the entire O2S assembly must be replaced. Do
not attempt to repair the wiring, connector or terminals.
In order for the sensor to function properly, it must have
clean reference air provided to it. This clean air refer-
ence is obtained by way of the O2S wire(s). Any attempt
to repair the wires, connector or terminals could result in
1F–16 ENGINE CONTROLS
DAEWOO M-150 BL2
the obstruction of the reference air and degrade the O2S
performance.
Misfire Monitor Diagnostic Operation
The misfire monitor diagnostic is based on crankshaft
rotational velocity (reference period) variations. The En-
gine Control Module (ECM) determines crankshaft rota-
tional velocity using the Crankshaft Position (CKP)
sensor and the Camshaft Position (CMP) sensor. When
a cylinder misfires, the crankshaft slows down momen-
tarily. By monitoring the CKP and CMP sensor signals,
the ECM can calculate when a misfire occurs.
For a non-catalyst damaging misfire, the diagnostic will
be required to monitor a misfire present for between
1000–3200 engine revolutions.
For catalyst-damaging misfire, the diagnostic will re-
spond to misfire within 200 engine revolutions.
Rough roads may cause false misfire detection. A rough
road will cause torque to be applied to the drive wheels
and drive train. This torque can intermittently decrease
the crankshaft rotational velocity. This may be falsely
detected as a misfire.
A rough road sensor, or “G sensor,” works together with
the misfire detection system. The rough road sensor
produces a voltage that varies along with the intensity of
road vibrations. When the ECM detects a rough road,
the misfire detection system is temporarily disabled.
Misfire Counters
Whenever a cylinder misfires, the misfire diagnostic
counts the misfire and notes the crankshaft position at
the time the misfire occurred. These “misfire counters”
are basically a file on each engine cylinder. A current
and a history misfire counter are maintained for each
cylinder. The misfire current counters (Misfire Current
#1–4) indicate the number of firing events out of the last
200 cylinder firing events which were misfires. The mis-
fire current counter will display real time data without a
misfire DTC stored. The misfire history counters (Misfire
Histtory #1–4) indicate the total number of cylinder firing
events which were misfires. The misfire history counters
will display 0 until the misfire diagnostic has failed and a
DTC P0300 is set. Once the misfire DTC P0300 is set,
the misfire history counters will be updated every 200
cylinder firing events. A misfire counter is maintained for
each cylinder.
If the misfire diagnostic reports a failure, the diagnostic
executive reviews all of the misfire counters before re-
porting a DTC. This way, the diagnostic executive re-
ports the most current information.
When crankshaft rotation is erratic, a misfire condition
will be detected. Because of this erratic condition, the
data that is collected by the diagnostic can sometimes
incorrectly identify which cylinder is misfiring.
Use diagnostic equipment to monitor misfire counter
data on EOBD compliant vehicles. Knowing which spe-
cific cylinder(s) misfired can lead to the root cause, evenwhen dealing with a multiple cylinder misfire. Using the
information in the misfire counters, identify which cylin-
ders are misfiring. If the counters indicate cylinders
numbers 1 and 4 misfired, look for a circuit or compo-
nent common to both cylinders number 1 and 4.
The misfire diagnostic may indicate a fault due to a tem-
porary fault not necessarily caused by a vehicle emis-
sion system malfunction. Examples include the following
items:
Contaminated fuel.
Low fuel.
Fuel-fouled spark plugs.
Basic engine fault.
Fuel Trim System Monitor Diagnostic
Operation
This system monitors the averages of short-term and
long-term fuel trim values. If these fuel trim values stay
at their limits for a calibrated period of time, a malfunc-
tion is indicated. The fuel trim diagnostic compares the
averages of short-term fuel trim values and long-term
fuel trim values to rich and lean thresholds. If either val-
ue is within the thresholds, a pass is recorded. If both
values are outside their thresholds, a rich or lean DTC
will be recorded.
The fuel trim system diagnostic also conducts an intru-
sive test. This test determines if a rich condition is being
caused by excessive fuel vapor from the controlled char-
coal canister. In order to meet EOBD requirements, the
control module uses weighted fuel trim cells to deter-
mine the need to set a fuel trim DTC. A fuel trim DTC
can only be set if fuel trim counts in the weighted fuel
trim cells exceed specifications. This means that the ve-
hicle could have a fuel trim problem which is causing a
problem under certain conditions (i.e., engine idle high
due to a small vacuum leak or rough idle due to a large
vacuum leak) while it operates fine at other times. No
fuel trim DTC would set (although an engine idle speed
DTC or HO2S DTC may set). Use a scan tool to observe
fuel trim counts while the problem is occurring.
A fuel trim DTC may be triggered by a number of vehicle
faults. Make use of all information available (other DTCs
stored, rich or lean condition, etc.) when diagnosing a
fuel trim fault.
Fuel Trim Cell Diagnostic Weights
No fuel trim DTC will set regardless of the fuel trim
counts in cell 0 unless the fuel trim counts in the
weighted cells are also outside specifications. This
means that the vehicle could have a fuel trim problem
which is causing a problem under certain conditions (i.e.
engine idle high due to a small vacuum leak or rough
due to a large vacuum leak) while it operates fine at oth-
er times. No fuel trim DTC would set (although an en-
gine idle speed DTC or HO2S DTC may set). Use a
scan tool to observe fuel trim counts while the problem is
occurring.
ENGINE CONTROLS 1F–17
DAEWOO M-150 BL2
DIAGNOSTIC INFORMATION AND PROCEDURES
SYSTEM DIAGNOSIS
DIAGNOSTIC AIDS
If an intermittent problem is evident, follow the guide-
lines below.
Preliminary Checks
Before using this section you should have already per-
formed the “Euro On-Board Diagnostic (EOBD) System
Check.”
Perform a thorough visual inspection. This inspection
can often lead to correcting a problem without further
checks and can save valuable time. Inspect for the fol-
lowing conditions:
Engine Control Module (ECM) grounds for being
clean, tight, and in their proper location.
Vacuum hoses for splits, kinks, collapsing and proper
connections as shown on the Vehicle Emission Con-
trol Information label. Inspect thoroughly for any type
of leak or restriction.
Air leaks at the throttle body mounting area and the
intake manifold sealing surfaces.
Ignition wires for cracks, hardness, proper routing,
and carbon tracking.
Wiring for proper connections.
Wiring for pinches or cuts.
Diagnostic Trouble Code Tables
Do not use the Diagnostic Trouble Code (DTC) tables to
try and correct an intermittent fault. The fault must be
present to locate the problem.
Incorrect use of the DTC tables may result in the unnec-
essary replacement of parts.
Faulty Electrical Connections or Wiring
Most intermittent problems are caused by faulty electri-
cal connections or wiring. Perform a careful inspection
of suspect circuits for the following:
Poor mating of the connector halves.
Terminals not fully seated in the connector body.
Improperly formed or damaged terminals. All connec-
tor terminals in a problem circuit should be carefullyinspected, reformed, or replaced to insure contact
tension.
Poor terminal-to-wire connection. This requires re-
moving the terminal from the connector body.
Road Test
If a visual inspection does not find the cause of the prob-
lem, the vehicle can be driven with a voltmeter or a scan
tool connected to a suspected circuit. An abnormal volt-
age or scan tool reading will indicate that the problem is
in that circuit.
If there are no wiring or connector problems found and a
DTC was stored for a circuit having a sensor, except for
DTC P0171 and DTC P0172, replace the sensor.
Intermittent Malfunction Indicator Lamp
(MIL)
An intermittent Malfunction Indicator Lamp(MIL) with no
DTC present may be caused by the following:
Improper installation of electrical options such as
lights, two way radios, sound, or security systems.
MIL driver wire intermittently shorted to ground.
Fuel System
Some intermittent driveability problems can be attrib-
uted to poor fuel quality. If a vehicle is occasionally run-
ning rough, stalling, or otherwise performing badly, ask
the customer about the following fuel buying habits:
Do they always buy from the same source? If so, fuel
quality problems can usually be discounted.
Do they buy their fuel from whichever fuel station that
is advertising the lowest price? If so, check the fuel
tank for signs of debris, water, or other contamina-
tion.
IDLE LEARN PROCEDURE
Whenever the battery cables, the Engine Control Mod-
ule (ECM), or the fuse is disconnected or replaced, the
following idle learn procedure must be performed:
1. Turn the ignition ON for 10 seconds.
2. Turn the ignition OFF for 10 seconds.