HOSE CONNECTION
Clamp securely at a position 3 to
7mm (0.12–0.27 in.) from hose end. With short pipe, fit hose as far as it reaches pipe joint as
shown.
Hose
Pipe
ClampClamps securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With following type pipe, fit hose as far as its peripheral
projection as shown.
Clamp securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With bent pipe, fit hose as its bent part as shown or till pipe
is about 20 to 30 mm (0.79–1.18 in.) into the hose.
Clamp securely at a
position 3 to 7 mm
(0.12–0.27 in.) from hose
end.
With straight pipe, fit hose till pipe is, about 20 to 30 mm
(0.79–1.18 in.) into the hose.
Hose
20 to 30 mm
(0.79–1.18 in.)
Clamp
6-4 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
PRECAUTION ON FUEL SYSTEM SERVICE
Work must be done with no smoking, in a well-ventilated area and
away from any open flames.
As fuel feed line (between fuel pump and fuel delivery pipe) is still
under high fuel pressure even after engine was stopped, loosen-
ing or disconnecting fuel feed line directly may cause dangerous
spout of fuel to occur where loosened or disconnected.
Before loosening or disconnecting fuel feed line, make sure to re-
lease fuel pressure according to “FUEL PRESSURE RELIEF
PROCEDURE”. A small amount of fuel may be released after the
fuel line is disconnected. In order to reduce the chance of person-
al injury, cover the fitting to be disconnected with a shop cloth. Put
that cloth in an approved container when disconnection is com-
pleted.
Never run engine with fuel pump relay disconnected when engine
and exhaust system are hot.
Fuel or fuel vapor hose connection varies with each type of pipe.
When reconnecting fuel or fuel vapor hose, be sure to connect
and clamp each hose correctly referring to left figure Hose Con-
nection.
After connecting, make sure that it has no twist or kink.
When installing injector or fuel delivery pipe, lubricate its O-ring
with spindle oil or gasoline.
When connecting fuel pipe flare nut, first tighten flare nut by hand
and then tighten it to specified torque.
6-6 ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10)
ENGINE DIAGNOSIS
GENERAL DESCRIPTION
This vehicle is equipped with an engine and emission control system which are under control of ECM (PCM).
The engine and emission control system in this vehicle are controlled by ECM (PCM). ECM (PCM) has an On-
Board Diagnostic system which detects a malfunction in this system and abnormality of those parts that influence
the engine exhaust emission. When diagnosing engine troubles, be sure to have full understanding of the outline
of “On-Board Diagnostic System” and each item in “Precaution in Diagnosing Trouble” and execute diagnosis ac-
cording to “ENGINE DIAGNOSTIC FLOW TABLE”.
There is a close relationship between the engine mechanical, engine cooling system, ignition system, exhaust sys-
tem, etc. and the engine and emission control system in their structure and operation. In case of an engine trouble,
even when the malfunction indicator lamp (MIL) doesn’t turn ON, it should be diagnosed according to this flow table.
ON-BOARD DIAGNOSTIC SYSTEM
ECM (PCM) in this vehicle has following functions.
When the ignition switch is turned ON with the engine at a stop,
malfunction indicator lamp (MIL) (1) turns ON to check the bulb
of the malfunction indicator lamp (1).
When ECM (PCM) detects a malfunction which gives an adverse
effect to vehicle emission while the engine is running, it makes the
malfunction indicator lamp (1) in the meter cluster of the instru-
ment panel turn ON or flash (flashing only when detecting a mis-
fire which can cause damage to the catalyst) and stores the mal-
function area in its memory.
(If it detects that continuously 3 driving cycles are normal after de-
tecting a malfunction, however, it makes MIL (1) turn OFF al-
though DTC stored in its memory will remain.)
As a condition for detecting a malfunction in some areas in the
system being monitored by ECM (PCM) and turning ON the mal-
function indicator lamp (1) due to that malfunction, 2 driving cycle
detection logic is adopted to prevent erroneous detection.
When a malfunction is detected, engine and driving conditions
then are stored in ECM (PCM) memory as freeze frame data. (For
the details, refer to description on Freeze frame data.)
It is possible to communicate by using not only SUZUKI scan tool
(Tech-1) (2) but also generic scan tool. (Diagnostic information
can be accessed by using a scan tool.)
ENGINE GENERAL INFORMATION AND DIAGNOSIS (TBI FOR G10) 6-17
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0705Transmission range sensor (switch)
circuit malfunction (A / T)No signal or multiple signals inputted with
shifted in “D” range1 driving
cycle
P0720Output speed sensor circuit
malfunction (A / T)No signal while running vehicle with “D” or
“2” range.1 driving
cycle
P0751Shift solenoid A (#1) performance
or stuck offWhile running in “D” range, engine speed as
compared to vehicle speed is higher or2 driving
P0756Shift solenoid B (#2) performance
or stuck offcom ared to vehicle s eed is higher or
lower than specified value.cycles
P0753Shift solenoid A (#1) electrical (A / T)Output command from PCM and output
voltage do not agree (solenoid circuit1 driving
P0758Shift solenoid B (#2) electrical (A / T)
voltage do not agree. (solenoid circuit
shorted to ground or open)cycle
P1620ECU code not registered
P1621No ECU code transmitted from
Immobilizer Control Module
Refer to Section 8A.
P1622Fault in ECM (PCM)
P1623ECU code not matched
HOSE CONNECTION
Clamp securely at a position 3 to
7mm (0.12–0.27 in.) from hose end. With short pipe, fit hose as far as it reaches pipe joint as
shown.
Hose
Pipe
ClampClamps securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With following type pipe, fit hose as far as its peripheral
projection as shown.
Clamp securely at a position
3 to 7 mm (0.12–0.27 in.)
from hose end.
With bent pipe, fit hose as its bent part as shown or till pipe
is about 20 to 30 mm (0.79–1.18 in.) into the hose.
Clamp securely at a
position 3 to 7 mm
(0.12–0.27 in.) from hose
end.
With straight pipe, fit hose till pipe is, about 20 to 30 mm
(0.79–1.18 in.) into the hose.
Hose
20 to 30 mm
(0.79–1.18 in.)
Clamp
6-1-4 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
PRECAUTION ON FUEL SYSTEM SERVICE
Work must be done with no smoking, in a well-ventilated area and
away from any open flames.
As fuel feed line (between fuel pump and fuel delivery pipe) is still
under high fuel pressure even after engine was stopped, loosen-
ing or disconnecting fuel feed line directly may cause dangerous
spout of fuel to occur where loosened or disconnected.
Before loosening or disconnecting fuel feed line, make sure to re-
lease fuel pressure according to “FUEL PRESSURE RELIEF
PROCEDURE”. A small amount of fuel may be released after the
fuel line is disconnected. In order to reduce the chance of person-
al injury, cover the fitting to be disconnected with a shop cloth. Put
that cloth in an approved container when disconnection is com-
pleted.
Never run engine with fuel pump relay disconnected when engine
and exhaust system are hot.
Fuel or fuel vapor hose connection varies with each type of pipe.
When reconnecting fuel or fuel vapor hose, be sure to connect
and clamp each hose correctly referring to left figure Hose Con-
nection.
After connecting, make sure that it has no twist or kink.
When installing injector or fuel delivery pipe, lubricate its O-ring
with spindle oil or gasoline.
When connecting fuel pipe flare nut, first tighten flare nut by hand
and then tighten it to specified torque.
6-1-6 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
ENGINE DIAGNOSIS
GENERAL DESCRIPTION
This vehicle is equipped with an engine and emission control system which are under control of ECM (PCM).
The engine and emission control system in this vehicle are controlled by ECM (PCM). ECM (PCM) has an On-
Board Diagnostic system which detects a malfunction in this system and abnormality of those parts that influence
the engine exhaust emission. When diagnosing engine troubles, be sure to have full understanding of the outline
of “On-Board Diagnostic System” and each item in “Precaution in Diagnosing Trouble” and execute diagnosis ac-
cording to “ENGINE DIAGNOSTIC FLOW TABLE”.
There is a close relationship between the engine mechanical, engine cooling system, ignition system, exhaust sys-
tem, etc. and the engine and emission control system in their structure and operation. In case of an engine trouble,
even when the malfunction indicator lamp (MIL) doesn’t turn ON, it should be diagnosed according to this flow table.
ON-BOARD DIAGNOSTIC SYSTEM
ECM (PCM) in this vehicle has following functions.
When the ignition switch is turned ON with the engine at a stop,
malfunction indicator lamp (MIL) (1) turns ON to check the bulb
of the malfunction indicator lamp (1).
When ECM (PCM) detects a malfunction which gives an adverse
effect to vehicle emission while the engine is running, it makes the
malfunction indicator lamp (1) in the meter cluster of the instru-
ment panel turn ON or flash (flashing only when detecting a mis-
fire which can cause damage to the catalyst) and stores the mal-
function area in its memory.
(If it detects that continuously 3 driving cycles are normal after de-
tecting a malfunction, however, it makes MIL (1) turn OFF al-
though DTC stored in its memory will remain.)
As a condition for detecting a malfunction in some areas in the
system being monitored by ECM (PCM) and turning ON the mal-
function indicator lamp (1) due to that malfunction, 2 driving cycle
detection logic is adopted to prevent erroneous detection.
When a malfunction is detected, engine and driving conditions
then are stored in ECM (PCM) memory as freeze frame data. (For
the details, refer to description on Freeze frame data.)
It is possible to communicate by using not only SUZUKI scan tool
(Tech-1) (2) but also generic scan tool. (Diagnostic information
can be accessed by using a scan tool.)
ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13) 6-1-17
DTC
NO.DETECTING ITEMDETECTING CONDITION
(DTC will set when detecting:)MIL
P0705Transmission Range Sensor Circuit
Malfunction
P0720Output Speed Sensor Circuit Malfunction
P0751Shift Solenoid A
Performance or Stuck Off
Refer to Section 7B
P0753Shift Solenoid A Circuit
P0756Shift Solenoid B
Performance or Stuck Off
P0758Shift Solenoid B Circuit
P1620
(No.84)ECU code not registered
P1621
(No.83)NO ECU code transmitted from
Immobilizer Control Module
Refer to Section 8GP1622
(No.82)Fault in ECM
Refer to Section 8G
P1623
(No.81)ECU code not matched
Note:
With the generic scan tool, only star () marked data in the above table can not be read.
6-1-44 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
MAP Sensor Individual Check
1) Disconnect coupler from MAP sensor (1).
2) Remove MAP sensor (1).
3) Arrange 3 new 1.5 V batteries (2) in series (check that total volt-
age is 4.5 – 5.0 V) and connect its positive terminal to “Vin” termi-
nal of sensor and negative terminal to “Ground” terminal. Then
check voltage between “Vout” and “Ground”.
Also, check if voltage reduces when vacuum is applied up to 400
mmHg by using vacuum pump (3).
Output voltage (Vin voltage 4.5 – 5.5 V, ambient temp. 20 –
30C, 68 – 86F)
ALTITUDE
BAROMETRICOUTPUT
(Reference)PRESSUREVOLTAGE
(ft)(m)(mmHg)(kPa)(V)
0
0
760
100
3343
2 000
610
707
94
3.3 – 4.3
2 001
611
Under 70794
3041
5 000
1 524over 634
85
3.0 – 4.1
5 001
1 525
Under 63485
2737
8 000
2 438over 567
76
2.7 – 3.7
8 001
2 439
Under 56776
25–33
10 000
3 048over 526
70
2.5 – 3.3
If check result is not satisfactory, replace MAP sensor (1).
4) Install MAP sensor (1) securely.
5) Connect MAP sensor (1) coupler securely.
6-1-76 ENGINE GENERAL INFORMATION AND DIAGNOSIS (SFI FOR G13)
INSPECTION
STEPACTIONYESNO
1Was “ENGINE DIAG. FLOW TABLE” performed?Go to Step 2.Go to “ENGINE DIAG.
FLOW TABLE”.
2Check CMP Sensor and connector for proper
installation.
Is CMP sensor installed properly and connector
connected securely?Go to Step 3.Correct.
3Check Wire Harness and Connection.
1) Disconnect connector from CMP sensor.
2) Check for proper connection to CMP sensor at
each terminal.
3) If OK, turn ignition switch ON and check for voltage
at each terminal of sensor connection
disconnected. See Fig. 1.
Terminal “B+”: 10 – 14 V
Terminal “Vout”: 4 – 5 V
Terminal “GND”: – 0 V
Is check result satisfactory?Go to Step 5.Go to Step 4.
4Was terminal “Vout” voltage out of specification in
Step 3 check?“B/W” wire open,
short or poor
connection. If wire and
connection are OK,
substitute a known-
good ECM (PCM) and
recheck.“B/W” or “B” wire
open, short or poor
connection.
5Check Ground Circuit for Open.
1) Turn ignition switch OFF.
2) Check for continuity between “GND” terminal of
CMP sensor connector and engine ground.
Is continuity indicated?Go to Step 6.“B” wire open or poor
ground connection.
6Check CMP Sensor for Operation.
1) Remove CMP sensor from sensor case.
2) Remove metal particles on end face of CMP
sensor, if any.
3) Connect each connector to ECM (PCM) and CMP
sensor.
4) Turn ignition switch ON.
5) Check for voltage at terminal C01-11 of connector
connected to ECM (PCM) by passing magnetic
substance (iron) while keeping approximately
1 mm (0.03 in.) gap with respect to end face of
CMP sensor. See Fig. 2 and 3.
Does voltage vary from low (0 – 1 V) to high (4 – 5 V)
or from high to low?Go to Step 7.Replace CMP sensor.