Terminal loose, affecting
performance ............ B .. Require repair or replacement.
Terminal loose, not
affecting performance .. 1 .. Suggest repair or replacement.
Threads damaged ......... A .. Require repair or replacement.
Threads stripped (threads
missing) ............... A ............ Require replacement.
Wire lead conductors
exposed ................ B .. Require repair or replacement.
Wire lead corroded ...... A .. Require repair or replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement.
( 3) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable;
check for accepted cleaning procedure.
\
\
\
\
\
\
\
EVAPORATIVE EMISSION (EVAP) CANISTERS
EVAPORATIVE EMISSION (EVAP) CANISTER INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Inoperative ............. A ........... ( 1) Require repair or
replacement.
Leaking ................. A ............ Require replacement.
Missing ................. C ............ Require replacement.
Saturated ............... A ............ Require replacement.
( 1) - Inoperative includes intermittent operation or out of
OEM specification.
\
\
\
\
\
\
\
EVAPORATIVE EMISSION (EVAP) FEEDBACK DEVICES
EVAPORATIVE EMISSION (EVAP) FEEDBACK DEVICE INSPECTION \
\
\
\
\
\
\
Condition Code Procedure
Attaching hardware
missing ................ C .......... Require replacement of
hardware.
Attaching hardware
threads damaged ........ A ... Require repair or replacement
of hardware.
Attaching hardware
threads stripped
(threads missing) ...... A ... Require repair or replacement
of hardware.
Connector broken ........ A .. Require repair or replacement.
Connector (Weatherpack
type) leaking .......... A .. Require repair or replacement.
Connector melted ........ A ........... ( 1) Require repair or
replacement.
Connector missing ....... C ............ Require replacement.
Contaminated ............ A ........... ( 2) Require repair or
replacement.
Wire lead open .......... A .. Require repair or replacement.
Wire lead shorted ....... A .. Require repair or replacement.
(1) - Determine cause and correct prior to repair or
replacement of part.
( 2) - Determine source of contamination, such as engine coolant,
fuel, metal particles, or water. Require repair or
replacement.
( 3) - Inoperative includes intermittent operation or out of
OEM specification. Some components may be serviceable;
check for accepted cleaning procedure.
\
\
\
\
\
\
\
SENSORS AND ACTUATORS
NOTE: Conditions pertaining to the sensors and actuators listed
in this section may be found under the name of the sensor
or actuator.
SENSOR ABBREVIATION TABLE
\
\
\
\
\
\
\
Sensor Abbreviation
Accelerator Pedal Position Sensor ......................... APP
Air Conditioning Cycling Switch ............................ AC
Air Conditioning Pressure Sensor ........................... ..
Air Fuel Ratio Sensor ...................................... ..
Barometric Pressure Sensor ............................... BARO
Camshaft Position Sensor .................................. CMP
Clutch Pedal Position Switch .............................. CPP
Cooling Fan Motor Sensors and Switches ..................... ..
Crankshaft Position Sensor ................................ CKP
Electronic Transmission Feedback Devices ................... ..
Engine Coolant Temperature Sensor ......................... ECT
Evaporative Emission feedback devices ...................... ..
Exhaust Gas Recirculation feedback devices ................. ..
Fan Control Sensor ......................................... FC
Intake Air Temperature Sensor ............................. IAT
Knock Sensor ............................................... KS
Manifold Absolute Pressure Sensor ......................... MAP
Mass Air Flow Sensor ...................................... MAF
O2 Sensor ................................................. O2S
Park Neutral Position Switch .............................. PNP
Power Steering Pressure Sensor ............................ PSP
Thermal Vacuum Valve ...................................... TVV
Throttle Position Sensor ............................ TP Sensor
Throttle Position Switch ................................... ..
Transmission Range Switch ........................... TR Switch
Vehicle Speed Sensor ...................................... VSS
Volume Air Flow Sensor .................................... VAF
\
\
\
\
\
\
\
ACTUATOR ABBREVIATION TABLE \
\
\
\
\
\
\
Actuator Abbreviation
Air Injection Control Solenoid ............................. ..
Electronic Transmission control devices .................... ..
Evaporative Emission Canister ............................ EVAP
Purge Device ............................................... ..
Exhaust Gas Recirculation Device .......................... EGR
Fuel Injector .............................................. ..
Idle Air Control .......................................... IAC
DTC P0303
Cylinder No. 3 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0304
Cylinder No. 4 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0305
Cylinder No. 5 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0306
Cylinder No. 6 misfire detected. Possible causes are:
connector or harness, faulty ignition coil, ignition power transistor,
spark plug, ignition circuit, injector, HO2S, compression pressure,
timing belt, air intake system, fuel pressure, or CKP sensor.
DTC P0325
Knock Sensor (KS) circuit failure. Possible causes are:
connector or harness, or faulty KS.
DTC P0335
Crankshaft Position (CKP) sensor circuit failure. Possible
causes are: connector or harness, or faulty CKP sensor.
DTC P0340
Camshaft Position (CMP) sensor circuit failure. Possible
causes are: connector or harness, or faulty CMP sensor.
DTC P0400
Exhaust Gas Recirculation (EGR) flow failure. Possible causes\
are: connector or harness, faulty EGR valve, EGR solenoid, EGR valve
control vacuum, or manifold differential pressure sensor.
DTC P0403
Exhaust Gas Recirculation (EGR) solenoid failure. Possible
causes are: connector or harness, or faulty EGR solenoid.
DTC P0420
Catalyst efficiency below threshold. Possible causes are:
cracked exhaust manifold, or faulty catalytic converter.
DTC P0421
Warm-up catalyst efficiency below threshold (bank 1).
Possible causes are: faulty exhaust manifold. If exhaust manifold is
okay, replace catalytic converter.
DTC P0431
Warm-up catalyst efficiency below threshold (bank 2).
Possible causes are: faulty exhaust manifold. If exhaust manifold is
okay, replace catalytic converter.
DTC P0442
Evaporative (EVAP) emission control system leak detected.
Possible causes are: connector or harness, faulty EVAP purge solenoid,
purge control valve, or vacuum hose routing.
DTC P0443
Evaporative (EVAP) purge control valve circuit failure.
Possible causes are: connector or harness, or faulty EVAP solenoid.
DTC P0446
Evaporative (EVAP) emission control system vent control
failure. Possible causes are: connector or harness, faulty EVAP vent
solenoid.
DTC P0450
Evaporative (EVAP) emission control system pressure sensor
failure. Possible causes are: connector or harness, or faulty fuel
tank differential pressure sensor.
DTC P0455
Evaporative (EVAP) emission control system large leak
detected. Possible causes are: connector or harness, faulty EVAP purge
solenoid, purge control valve, or vacuum hose routing.
DTC P0500
Vehicle Speed Sensor (VSS) failure. Possible causes are:
connector or harness, or faulty VSS.
DTC P0505
Idle Air Control (IAC) system failure. Possible causes are:
connector or harness, or faulty IAC motor.
DTC P0510
Closed Throttle Position (TP) switch failure. Possible causes\
are: connector or harness, or faulty closed TP switch.
DTC P0551
Power Steering Pressure (PSP) sensor failure. Possible causes\
are: connector or harness, or faulty PSP sensor.
DTC P0705
Automatic transaxle/transmission range sensor circuit
failure. Possible causes are: connector or harness, or faulty PNP
switch.
DTC P0710
Automatic transaxle/transmission fluid sensor failure.
Possible causes are: connector or harness, or faulty
transaxle/transmission sensor.
DTC P0715
Automatic transaxle input/turbine speed sensor circuit
failure. Possible causes are: connector or harness, or pulse
generator.
DTC P0720
Automatic transaxle input/turbine speed sensor circuit
failure. Possible causes are: connector or harness, or pulse
generator.
DTC P0725
Engine speed input circuit failure. Possible causes are:
connector or harness.
DTC P0740
Torque converter clutch system failure. Possible causes are:
CLEARING DTCS
CAUTION: When battery is disconnected, vehicle computer and memory
systems may lose memory data. Driveability problems may
exist until computer systems have completed a relearn cycle.
To clear DTCs using a scan tool, refer to owners manual
supplied with scan tool. If scan tool is not available, DTCs may also
be cleared by disconnecting negative battery cable or PCM for at least
15 seconds, allowing PCM to clear DTCs. Reconnect negative battery
cable and check for DTCs to confirm repair.
PCM LOCATION
PCM LOCATION TABLE \
\
\
\
\
\
Application Location
Montero ........................... Right Front Kick Panel
3000GT ............................. Behind Center Console
\
\
\
\
\
\
SUMMARY
If no hard DTCs (or only pass DTCs) are present, driveability\
symptoms exist, or intermittent DTCs exist, proceed to H - TESTS W/O
CODES article for diagnosis by symptom (i.e., ROUGH IDLE, NO START,
etc.) or intermittent diagnostic procedures.
TERMINAL IDENTIFICATION
NOTE: The following terminals are shown as viewed from component
side of connector. Vehicles are equipped with different
combinations of components. Not all components are used on
all models. To determine component usage, see appropriate
wiring diagram in L - WIRING DIAGRAMS article.
TERMINAL IDENTIFICATION DIRECTORY TABLE
\
\
\
\
\
\
Connector See
ASD/Fuel Pump/MFI Relay ...................... Fig. 1 or 2
CKP/CMP Sensor ............................ Fig. 3, 4 or 5
DLC ............................................... Fig. 6
ECT Sensor ........................................ Fig. 7
EVAP Purge Solenoid ............................... Fig. 8
EVAP Vent Solenoid ................................ Fig. 9
Fuel Injector ....................... Fig. 10, 11, 12 or 13
Fuel Pump ................................... Fig. 14 or 15
Fuel Pump Control/Relay Module .................... Fig. 16
FTDP Sensor ...................................... Fig. 17
Generator Field .................................. Fig. 18
HO2S ............................................. Fig. 19
IAC Motor ........................................ Fig. 20
Ignition Coil .......................... Fig. 21, 22 or 23
Ignition Failure Sensor .......................... Fig. 24
Ignition Power Transistor .................. Fig. 25 or 26
KS ............................................... Fig. 27
MDP Sensor ....................................... Fig. 28
PCM .............................................. Fig. 29
Fig. 8: Identifying EVAP Purge Solenoid Terminals
Courtesy of Mitsubishi Motor Sales of America
Fig. 9: Identifying EVAP Vent Solenoid Terminals
Courtesy of Mitsubishi Motor Sales of America
continuity between chassis ground and EGR solenoid connector terminal
No. 2. If continuity does not exist, repair wiring harness as
necessary. If continuity exists, condition required to set DTC is not
present at this time. Go to next step.
12) Test is complete. Intermittent problem may exist. Road
test vehicle (if necessary) and attempt to duplicate conditions that
caused original complaint. Recheck for DTCs. If no DTCs are displayed,
go to INTERMITTENT DTCS .
DTC P0420, P0421 & P0431: CATALYST EFFICIENCY BELOW
THRESHOLD
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
Specific self-diagnostic test not available from manufacturer
at time of publication. Check catalytic converter and check for
cracked exhaust manifold. Also, see F - BASIC TESTING article.
DTC P0442: EVAPORATIVE (EVAP) EMISSION CONTROL SYSTEM LEAK
DETECTED
NOTE: For terminal identification, see TERMINAL IDENTIFICATION. For
circuit and wire color identification, see
L - WIRING DIAGRAMS article.
1) Remove fuel cap. Push fuel pipe restrictor to operate On-
board Fuel Vent Valve (OFLV). Install and tighten fuel cap. Remove
fuel cap and ensure distance between filler tube and OFLV is 1.1" (28
mm). If distance is as specified, go to next step. If distance is not
as specified, replace fuel tank filler tube assembly. Go to step 24).
2) Disconnect and plug air filter-to-EVAP vent solenoid hose
at air filter. Disconnect intake manifold plenum-to-EVAP purge
solenoid at intake manifold plenum. Install a "T" fitting between
vacuum hose and intake manifold plenum. Connect a hand-held
pressure/vacuum pump to "T" fitting. Go to next step.
CAUTION: DO NOT apply more than 0.57 psi in following step. Applying
more than specified psi can crack fuel tank.
NOTE: Ensure fuel tank is at least 1/4 full. The lower the fuel
level in fuel tank, the longer it takes to pressurize fuel
system.
3) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Using hand-held pressure/vacuum pump, apply\
0.42 psi. If scan tool reading reaches 0.42 psi, go to next step. If
reading does not reach 0.42 psi, go to step 9).
4) Wait 20 seconds and read scan tool. If scan tool reading
increases 0.06 psi or less, go to next step. If scan tool reading
increases more than 0.06 psi, go to step 21).
5) Disconnect EVAP canister purge hose. Connect Purge Flow
Indicator (MB995061) between EVAP canister and disconnected hose. Turn\
engine on and allow it to reach operating temperature. Turn all lights
and accessories off. Place transmission in Park or Neutral. Observe
purge flow indicator while increasing engine RPM several times. If
purge flow indicator reads less than 2.5 SCFH (20 cm(3)/sec), check
EVAP canister purge hose and EVAP canister port for clogging. If hose
and port are okay, check EVAP purge solenoid. See DTC P0443. If
solenoid is okay, replace EVAP canister. Go to step 24).
6) Using scan tool, read Engine Coolant Temperature (ECT)
sensor temperature (item 21). Compare scan tool reading with
temperature gauge reading. If readings are about the same, go to next
step. If readings are not about the same, go to DTC P0115 test.
7) Using a thermometer, check engine compartment ambient
temperature. Using scan tool, read Intake Air Temperature (IAT) sensor\
temperature (item 13). Compare IAT sensor and thermometer readings. If\
readings are not about the same, go to DTC P0110 test. If readings are
about the same, go to next step.
8) Using scan tool, read Power Steering Pressure (PSP) switc\
h
status (item 27). Switch status should read ON when steering wheel is
turned. If switch status is as specified, go to step 24). If switch
status is not as specified, go to DTC P0551 test.
9) Remove fuel cap. Install a fuel tank filler tube adapter
in place of fuel cap. Plug fuel filler tube adapter hose. Disconnect
and plug air filter-to-EVAP vent solenoid hose at air filter.
Disconnect intake manifold plenum-to-EVAP purge solenoid at intake
manifold plenum. Install a "T" fitting between vacuum hose and intake
manifold plenum. Connect hand-held pressure/vacuum pump to "T"
fitting. Go to next step.
CAUTION: DO NOT apply more than 0.57 psi in following step. Applying
more than specified psi can crack fuel tank.
NOTE: Ensure fuel tank is at least 1/4 full. The lower the fuel
level in fuel tank, the longer it takes to pressurize fuel
system.
10) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Using hand-held pressure/vacuum pump, apply\
0.42 psi. If scan tool reading reaches 0.42 psi, replace fuel cap. Go
to step 24). If reading does not reach 0.42 psi, go to next step.
11) Disconnect hand-held pressure/vacuum pump from "T"
fitting. Install an evaporative emission system tester in place of
vacuum held pump and apply 0.49 psi. Wait two minutes. If pressure
drops less than 0.20 psi, go to next step. If pressure drops 0.29 psi
or more, go to step 14).
12) Disconnect EVAP purge solenoid-to-EVAP canister hose at
EVAP canister. Connect hand-held pressure/vacuum pump to hose and
apply 0.9 psi. If pressure is not maintained, check EVAP purge
solenoid for leak. If EVAP purge solenoid is okay, replace hose. Go to
step 24). If pressure is maintained, go to next step.
13) Disconnect EVAP vent solenoid-to-EVAP canister hose at
EVAP canister. Connect hand-held pressure/vacuum pump to hose and
apply 0.9 psi. If pressure is not maintained, check EVAP vent solenoid
for leak. If EVAP vent solenoid is okay, replace hose. Go to step 24).
If pressure is maintained, replace EVAP canister. Go to step 24).
14) Ensure hoses are properly routed and connected. See M -
VACUUM DIAGRAMS article. Install hoses as necessary and go to step
24). If hoses are okay, go to next step.
15) Disconnect OFLV-to-EVAP canister hose at OFLV and EVAP
canister. Plug hose at OFLV end. Connect hand-held pressure/vacuum
pump to hose at EVAP canister end. Apply 0.9 psi. If pressure is not
maintained, replace hose. Go to step 24). If pressure is maintained,
go to next step.
16) Using scan tool, read Fuel Tank Differential Pressure
(FTDP) sensor (item 73). Connect hand-held pressure/vacuum pump to
OFLV. While monitoring scan tool, apply 0.42 psi. If scan tool reading
reaches 0.42 psi, go to next step. If reading does not reach 0.42 psi,
go to step 20).
17) Disconnect OFLV-to-EVAP canister hose at EVAP canister.
Connect hand-held pressure/vacuum pump to hose and apply 0.9 psi. If
pressure is not maintained, go to next step. If pressure is
maintained, go to step 19).
18) Disconnect EVAP purge solenoid-to-EVAP canister hose at