LUBRICATION 0-14
SAE 5W-30 oils may be used during periods when
temperatures of 32° and below are to be expected.
Types of Oils
In service, crankcase oils may form sludge and varnish
and under some conditions, corrosive acids unless pro-
tected against oxidation.
To minimize the formation of these harmful products
and to assure the use of oil best suited for present day
operating conditions, automobile manufacturers have de-
veloped a series of sequence tests designed to evaluate
the ability of any oil to properly lubricate automobile
engines.
It is recommended that only those oils which are
certified by their suppliers as meeting or exceeding the
maximum severity requirements of these sequence tests
(or GM Standard 4745-M) be used in Chevrolet engines.
Certified sequence tested oils will be described as such
on their containers.
Maintaining Oil Level
The oil gauge rod is marked "Full" and "Add Oil."
These notations have broad arrows pointing to the level
lines.
The oil level should be maintained between the
two lines, neither going above the "Full" line nor under
the "Add Oil" line. DO NOT OVERFILL. After operating
vehicle allow a few minutes for oil to return to crankcase
before checking oil level.
Check the oil level frequently and add oil when
necessary.
Oil and Filter Change Intervals
NOTE:
Under prolonged dusty driving condi-
tions,
it is recommended that these operations
be performed more often.
OIL
To insure continuation of best performance, low main-
tenance cost and long engine life, it is necessary to
change the crankcase oil whenever it becomes contami-
nated with harmful foreign materials. Under normal
driving conditions draining the crankcase and refilling
with fresh oil every 60 days or every 6000 miles which-
ever occurs first, is recommended.
It is always advisable to drain the crankcase only after
the engine has become thoroughly warmed up or reached
normal operating temperature. The benefit of draining is,
to a large extent, lost if the crankcase is drained when
the engine is cold, as some of the suspended foreign
material will cling to the sides of the oil pan and will not
drain out readily with the cold, slower moving oil.
OIL FILTER
Change engine oil filter every 6000 miles or every 6
months, whichever occurs first.
NOTE:
For Vehicles in heavy duty operation
involving continuous start-stop or prolonged idl-
ing, engine oil should be changed after 2500-
3000 miles of operation. The filter should be
changed after 5000-6000 miles of operation.
Crankcase Dilution
Probably the most serious phase of engine oil deterio-
ration is that of crankcase dilution which is the thinning
of the oil by fuel vapor leaking by pistons and rings and
mixing with the oil and by condensation of water on the
cylinder walls and crankcase.
Leakage of fuel, or fuel vapors, into the oil pan occurs
mostly during the "warming up" period when the fuel is
not thoroughly vaporized and burned. Water vapor enters
the crankcase through normal engine ventilation and
through exhaust gas blow-by. When the engine is not
completely warmed up, these vapors condense, combine
with the condensed fuel and exhaust gases and form acid
compounds in the crankcase.
As long as the gases and internal walls of the crank-
case are hot enough to keep water vapor from con-
densing, no harm will result. However, when the engine
is run in low temperatures moisture will collect and
unite with the gases formed by combustion resulting in
an acid formation. The acid thus formed is likely to
cause serious etching or pitting which will manifest itself
in excessively rapid wear on piston pins, camshaft
bearings and other moving parts of the engine, oftentimes
causing the owner to blame the car manufacturer or the
lubricating oil when in reality the trouble may be traced
back to the character of fuel used, or a condition of the
engine such as excessive blowby or improper carburetor
adjustment.
Automatic Control Devices to Minimize
Crankcase Dilution
All engines are equipped with automatic devices which
aid greatly in minimizing the danger of crankcase
dUution.
The thermostat, mounted in the cylinder head water
outlet, restricts the flow of water to the radiator until a
predetermined temperature is reached, thus minimizing
the length of time required to reach efficient operating
temperature, reducing the time that engine temperatures
are conducive to vapor condensation.
A water by-pass is included in the cooling system,
utilizing a hole in the front of, the cylinder block. This
allows a limited circulation of coolant, bypassing the
thermostat until thermostat opening temperatures are
reached. This system provides a uniform coolant tem-
perature throughout the engine, eliminating localized
hot-spots, improving exhaust valve life, provides fast
warmrup of lubricating oil and fast temperature rise in
the coolant which provides fast heater operation in cold
weather.
A thermostatic heat control on the exhaust manifold
during the warming up period, automatically directs the
hot exhaust gases against the center of the intake mani-
fold, greatly aids in proper vaporization of the fuel.
An automatic choke reduces the danger of raw or
unvaporized fuel entering the combustion chamber and
leaking into the oil reservoir.
An.
efficient crankcase ventilating system drives off
fuel vapors and aids in the evaporation of the raw fuel
and water which may find its way into the oil pan.
CRANKCASE BREATHER CAP
Clean and re-oil at every oil change..
CHEVROLET CHASSIS SERVICE MANUAL
LUBRICATION 0-15
CRANKCASE VENTILATION VALVE
VALVE TYPE
NOTE: Under prolonged dusty driving condi-
tions,
it is recommended that these operations
be performed more often. Every 12,000 miles
or 12 months the valve should be replaced.
Connecting hoses, fittings, flame arrestor and
crankcase breather cap (where used) should be
cleaned. At every oil change the system should
be tested for proper function and serviced, if
necessary.
FUEL FILTER
Replace filter element located in carburetor inlet if
flooding occurs, if engine surges during constant speed
operation (pulsating effect) or if poor performance is
experienced during acceleration or at higher speeds.
AIR CLEANER
NOTE: Under prolonged dusty driving condi-
tions,
it is recommended that these operations
be performed more often.
POLYURETHANE TYPE-
Every 12,000 miles clean element in solvent, squeeze
out solvent, then soak in engine oil and squeeze out
excess.
OIL WETTED PAPER ELEMENT TYPE-
First 12,000 miles inspect or test element; if satis-
factory, re-use element but recheck every 6,000 miles
until replaced. Element must not be washed, oiled,
tapped or cleaned with an air hose.
BATTERY TERMINAL WASHERS
Battery terminals have felt washers between top of
case and cable connections to minimize corrosive action
of battery acid. These felt washers should be saturated
with engine oil every 6,000 miles.
DISTRIBUTOR
4 and 6-Cylinder Engine—Remove distributor cap and
rotate lubricator 1/2 turn at 12,000 mile intervals. Re-
place at 24,000 mile intervals.
8-Cylinder Engine—Change cam lubricator end for end
at 12,000 mile intervals. Replace at 24,000 mile
intervals.
REAR AXLE AND 3-SPEED AND
OVERDRIVE, 4-SPEED TRANSMISSIONS
The passenger car operates under the most severe
lubrication conditions at high speed and requires a hypoid
lubricant which will meet this condition.
Recommended Lubricants
Standard Rear Axles—SAE 90 "Multi-Purpose" gear
lubricant.
Positraction Rear Axles—Use special Positraction
lubricant.
CAUTION: Straight Mineral Oil gear lubricants
must not be used in hypoid rear axles.
Transmissions—SAE 90 "Multi-Purpose" gear
lubricant.
The SAE 90 viscosity grade is recommended for year
round use. However, when extremely low temperatures
are encountered for protracted periods during the winter
months, the SAE 80 viscosity grade may be used.
"Multi-Purpose" Gear Lubricants
Gear lubricants that will satisfactorily lubricate hypoid
rear axles have been developed and are commonly re-
ferred to as ' 'Multi-Purpose" gear lubricants meeting
U.S.
Army Ord. Spec. MIL-L-2105B.
These lubricants can also be satisfactorily used in
manual transmissions.
CAUTION: With Positraction rear axles use
special Positraction lubricant.
"Multi-Purpose" gear lubricants must be manufac-
tured under carefully controlled conditions and the
lubricant manufacturer must be responsible for the
satisfactory performance of his product. His reputation
is the best indication of quality.
Lubricant Additions
The lubricant level in the axle and transmission hous-
ings should be checked periodically. (Every 6,000 miles.)
It is recommended that any additions required to bring
up the lubricant level be made using the same type lubri-
cant already in the housing.
When checking lubricant level in transmission or rear
axle the unit being cheeked should be at operating
temperature. With unit at operating temperature the
lubricant should be level with bottom of the filler plug
hole.
If the lubricant level is checked with the unit cold
the lubricant level should be 1/2 inch below the filler
plug hole.
Lubricant Changes
The rear axle lubricant does not require changing for
the life of the vehicle. If additions are needed, or when
refilling the axle after service procedures, use lubricants
described above.
POWERGLIDE TRANSMISSION
NOTE: Every 12,000 miles, it is recommended
that the Powerglide low band be adjusted as
specified in Section 7 of this manual.
Every 6,000 miles--Check fluid level on dipstick with
engine idling, selector lever in neutral position, parking
brake set and transmission at operating temperature. If
fluid level is below full mark on dip stick, adding a small
amount of Automatic Transmission Fluid, General Motors
Automatic Transmission Fluid (Part Numbers 1050568-
69,
70) is recommended. If this fluid is not obtainable,
use Automatic Transmission Fluid Type 'A' bearing the
mark AQ-ATF followed by a number and the suffix letter
'A'.
Recheck fluid level on dip stick and again add a
small amount of fluid if needed to bring level to full
mark. DO NOT OVERFILL.
CHEVROLET CHASSIS SERVICE MANUAL
HEATER AND AIR CONDITIONING 1A-5
them in their proper location. (See Figure 8)
12.
Refill radiator.
Defroster Duct
Figure 9 illustrates the defroster duct installation
on Chevrolet, Chevelle and Camaro vehicles.
Bowden Cobles
Bowden cable attachment should be made in the fol-
lowing manner:
1.
With the cables attached to the control assembly
and levers, move the levers to their fully left or
closed position.
2.
Attach cable wires to the heater valve levers and
tighten cable attaching bracket screws.
3.
Check for proper cable operation and readjust as
necessary.
Control Panel
Control panel installation is shown in Figures 10, 11,
and 12.
Fan Switch
Replacement
1.
Remove control assembly-to-instrument panel re-
inforcement attaching screws and push the control
assembly toward the front of the vehicle and down.
2.
Remove the two switch attaching screws and the
electrical connector.
3.
Replace switch, screws, and electrical connector.
4.
Place control assembly into instrument panel and
replace attaching screws.
Resistor
The resistor assembly is attached to the heater dis-
tributor assembly. It should "be replaced if low or
medium blower speed is inoperative. Remove the glove
box for access to the unit.
HEATER HOUSING
LOWER RIGHT HAND
RETAINER NUT
Fig.
6—Air Distributor Duct (Camaro)
Fig.
7—Access to Blower and Housing (Chevelle)
CHEVY II
Heater Assembly
Removal (Fig. 13)
1.
Drain radiator.
2.
From within engine compartment;
a. Remove heater hoses from heater inlet and outlet
connections.
b.
Remove three nuts around blower motor attaching
heater assembly to dash panel.
3.
From within vehicle:
a. Remove glove box and glove box door.
b.
Remove screw attaching distributor bracket to
dash.
c. Remove the screw attaching case bracket to the
adapter assembly bracket.
d. Carefully detach heater assembly from dash panel
and adapter assembly and lower it toward floor of
vehicle.
e. Disconnect all bowden cable connections, the
wiring connector and the defroster hoses.
4.
Remove the heater assembly from the vehicle.
Core Replacement
1.
'With the heater assembly removed from the vehicle,
remove the screws attaching the core cover to the
heater assembly.
2.
Remove the core mounting screws and remove the
core from the assembly.
3.
Replace with a new core and replace the core cover.
Installation
1.
Be sure the adapter seal and blower motor seal are
in place and set into place beneath the instrument
panel.
CHEVROLET CHASSIS SERVICE MANUAL
HEATER AND AIR CONDITIONING 1A-10
PLATE RETAINERS
CORE BRACKET SCREWS
Fig.
18—Corvette Heater Core Removal
7. Place a protective covering (waterproof if possible)
over the carpeting under the heater.
8. Remove the two bowden cables from the instrument
panel and disconnect the wiring connectors from the
blower switch and from the resistor.
9. Carefully work the heater assembly out from beneath
the dash.
Core Removal
1.
Remove the heater assembly as described above.
2.
Remove the sheet metal nuts which retain the core
mounting plate to the core housing.
3.
Remove the screws attaching the core brackets to
the core mounting plate and separate the core and
plate. .
Installation
1.
Assemble the core to plate with non-hardening
sealer. Attach the core mounting screws.
2.
Attach the core and plate assembly to the case with
the two sheet metal nuts. The assembly is ready for
installation as described below.
Heater Assembly Installation
1.
Carefully position the heater assembly in place on
inner surface of dash panel, then install the blower
and air inlet assembly on heater studs extending
through to the engine side of the panel. Attach the
seven stud nuts.
2.
Install electrical connectors to the blower switch and
resistor and reinstall the bowden cables to the
instrument panel.
3.
Replace the blower electrical connectors.
4.
Replace the heater hoses. (See Figure 20)
5. Replace the battery and the radiator supply tank.
6. Refill the radiator and check for leakage.
7. Check heater operation and make control adjustments
as necessary.
8. Replace the console panels and the glove
compartment.
CHEVROLET CHASSIS SERVICE MANUAL
HEATER
AND AIR
CONDITIONING
1A-13
AIR CONDITIONING
INDEX
Page
General Description
1A-13
Four-Season System
1A-13
Controls
1A-16
Comfortron System
. 1A-18
System Components
lA-19
Controls
1A-20
Universal System
. .
1A-21
Chevy
n
All-Weather System
•
1A-21
Corvette Four-Season System
. 1A-22
General Information
. . . 1A-26
Precautions
in
Handling R-12
1A-26
Precautions
in
Handling Refrigerant Lines
1A-28
Maintaining Chemical Stability
in the
Refrigeration System
1A-28
Gauge
Set 1A-29
Charging Station
IA-29
Leak Testing
the
System
1A-29
Vacuum Pump
1A-30
Availability
of
Refrigerant-12
. . 1A-30
Compressor
Oil 1A-31
Compressor Serial Number
1A-31
Inspection
and
Periodic Service
1A-31
Pre-Delivery Inspection
1A-31
6,000 Mile Inspection
1A-32
Periodic Service
, 1A-32
Installing Gauge
Set to
Check System Operation
....
1A-32
Performance Test
1A-32
Performance Data lA-r33
Comfortron System Operational Test
1A-33
Chevrolet Comfortron Tester
1A-34
Complete System Checks
1A-35
Maintenance
and
Adjustments ......
1A-37
Evaporator Comtrol Valve (POA)
.
1A-37
Page
Thermostatic Switch
1A-37
Expansion Valve
1A-41
Engine Idle Compensator
. . .
1A-42
Evacuating
and
Charging Procedures
1A-42
Purging
the
System
1A-42
Evacuating
and
Charging
the
System
1A-43
Checking
Oil . 1A-43
Component Replacement
and
Minor Repair
1A-45
Refrigerant Line Connections
1A-45
Repair
of
Refrigerant Leaks
1A-46
Preparing System
for
Replacement
of
Component Parts
. 1A-46
Foreign Material
in the
System
.
1A-47
Condenser
.
1A-48
Receiver-Dehydrator
1A-48
Evaporator
1A-49
Expansion Valve
1A-57
Evaporator Control Valve (POA)
1A-59
Thermostatic Switch
or
Blower Switch
. .
1A-59
All Weather-Pull Cable
1A-61
Blower Assembly
1A-62
Air Inlet Valve
.
1A-64
Blower
and
Evaporator Assembly
1A-64
Air Distributor Assembly
and
Outlet Ducts ...... 1A-64
Comfortron Automatic Control Components
1A-66
Collision Procedure lA-70
Four-Season Heater Components
1A-73
Comfortron Heater Components
. . . 1A-75
Compressor
1A-76
Wiring Diagrams
1A-78
Special Tools
.
1A-84
GENERAL DESCRIPTION
Four
air
conditioning systems
are
covered
in
this
section. They are:
1.
The
Four-Season System (Chevrolet, Chevelle,
Camaro and Corvette).
2.
The Comfortron System (Chevrolet).
3.
The All Weather System (Chevy n).
4.
The Universal System (Chevrolet, Chevelle, Chevy
n,
Camaro)
Underhood components (that
is, the
compressor,
con-
denser
and
receiver-dehydrator)
are
much
the
same
in
type,
location
and
method
of
attachment
on all of
the
above systems. The six-cylinder reciprocating compres-
sor
is
bracket-mounted
to the
engine
and
belt driven
from
the
crankshaft pulley.
The
condenser
is
mounted
ahead
of the
engine cooling radiator
and the
receiver-
dehydrator
is
mounted
in
the refrigerant line downstream
of
the
condenser.
All
cooling system components
are
connected by means
of
flexible refrigerant lines.
Evaporator size
and
location differ from system
to
system
as do
methods
of
temperature control
and air
supply
and
distribution.
FOUR-SEASON SYSTEM
The Four-Season system used
in the
Chevrolet,
Chevelle, Camaro,
and
Corvette vehicles
may be
iden-
tified
by the
fact that
it
uses
an
evaporator pressure
control known
as the POA
(Pressure Operated Absolute)
suction throttling valve.
Both
the
heating
and
cooling functions
are
performed
by this system.
Air
entering
the
vehicle must pass
through
the
cooling unit (evaporator)
and
through
(or
around)
the
heating unit,
in
that order, and the system
is
thus referred to
as a
''reheat" system.
The evaporator provides maximum cooling
of the air
passing through
the
core when
the air
conditioning sys-
tem
is
calling
for
cooling.
The
control valve acts in the
system only
to
control
the
evaporator pressure
so
that
minimum possible temperature
is
achieved without core
freeze-up.
The
valve
is
preset,
has no
manual con-
trol,
is
automatically altitude compensated,
and non-
repairable.
The heater core will be hot
at
all times since no water
valve
is
present
in
the system.
System operation
is as
follows (See Figure 24 and 25):
Air, either outside
air or
recirculated
air
enters
the
system
and is
forced through
the
system by the blower.
As
the air
passes through
the
evaporator core,
it
receives maximum cooling
if
the
air
conditioning controls
are calling
for
cooling. After leaving
the
evaporator,
the
air
enters
the
Heater
and Air
Conditioner Selector
Duct Assembly where,
by
means
of
manually operated
diverter doors,
it is
caused
to
pass through
or to
bypass
the heater core
in the
proportions necessary
to
provide
the desired outlet temperature. Conditioned airflow then
enters
the
vehicle through either
the
floor distributor
duct
or the
dash outlets. Remember that the heater core
CHEVROLET CHASSIS SERVICE MANUAL
HEATER AND AIR CONDITIONING 1A-19
Transducer
The transducer will produce a vacuum output that is
completely adjustable by varying the input voltage which
is provided by the amplifier. An increase in the applied
voltage results in a reduced vacuum output.
Power Servo
The power servo receives a vacuum signal from the
transducer, and it is capable of assuming any position
that is called for by the sensors, amplifier, and trans-
ducer. The power servo performs the following functions:
1.
Positions the temperature mix door via the tern-
perature door link. The position of this door~"de-
termihes the portions of hot and cold air being
blended and discharged into the car.
2.
Operates the power servo vacuum valve which de-
termines the air flow paths for heating and air
conditioning.
3.
Contains a printed circuit board which controls the
blower speed. The power servo position determines
the blower speed, but the control lever switch can
override the blower program depending upon the
customer's preference.
4.
Contains the "Hi" blower delay thermistor and the
"master delay thermistor".
Outside Air Diaphragm
When there is no vacuum applied to the hose, the out-
side air door is closed under spring tension. With the
door closed, air is taken from the inside of the auto-
mobile and re-circulated. Applying vacuum to the dia-
phragm opens the door for outside air.
Mode Door Diaphragm
Located behind the duct work, the mode door diaphragm
directs the air flow out either the air conditioning outlets,
the heater floor outlet, or both the heater and air con-
ditioning outlets. This is a push-pull type diaphragm
actuated by vacuum through two hoses and controlled by
the power servo vacuum switch.
Defroster Door
The defroster door is in the defog position until vacuum
is applied to the actuator to obtain either full heat or full
de-ice position.
High Blower Delay Thermistor
The high blower delay thermistor is located on the
power servo housing under the power servo vacuum valve
and printed circuit board assemblies. The function of the
thermistor is to operate the blower at a reduced speed
when the control is in the HI FRONT position until the
residual cold air is discharged from the duct work. This
function occurs when the blower first comes "on" in cold
weather.
Vacuum Tank
During heavy acceleration, the vacuum supply from
the carburetor drops. The vacuum tank, using a^ check
valve, stores vacuum so that under these conditions
vacuum will be available for the Comfortron.
Thermal Vacuum Valve (Hot Water Vacuum Switch)
When engine coolant temperature reaches 75°F, the
valve opens and supplies vacuum to the outside air door
if the system is calling for outside air.
Master Delay Thermister
This thermistor delays the initial operation of the
blower when the system is in the heat mode. In cold
weather this allows outside ram air to flow through the
system thereby purging the cold air in the ducts gradually
until the coolant reaches about 105°F. Then, the termis-
tor passes enough current to energize the master delay
relay which powers the blower at about nine volts.
Vacuum Relay Valve
This relay valve will shut off transducer vacuum to the
power servo whenever the vacuum from the engine intake
manifold falls below the vacuum in the power servo
supply line (engine stopped or operating at low manifold
vacuum). This causes the power servo to be held in
position when the vacuum supply falls too low to maintain
servo control.
Vacuum Bleeder
A vacuum bleeder insures that the outside air door will
close (diaphragm will bleed down) after the system has
been shut down. This prevents outside air from entering
when starting the system on a cold day before the engine
coolant temperature reaches 75°F.
Sun—Ambient Sensor
The sun-ambient sensor measures the temperature of
the air entering the air intake grille in front of the wind-
shield. The sensor is exposed to sun light so that it can
lower the in-car temperature slightly when the sun
is shining.
Ambient Switch
The ambient switch operates the air conditioning com-
pressor clutch. When the outside temperature is above
40° F. the switch will be closed and the compressor will
be running. This switch is included as| part of the sun-
ambient sensor assembly, but operates independently.
Resistor Assembly
The blower resistors are located in the evaporator
housing. The printed circuit board switch in the power
servo determines which of the resistors is being used,
and as in conventional systems, the resistors control the
blower speed.
System Operation
When starting the Comfortron System in cold weather,
the following sequence of events occurs:
1.
Initially the system is inoperative. In LO FRONT
position the master delay thermistor is warming
(self-heating because current is flowing through it)
CHEVROLET CHASSIS SERVICE MANUAL
HEATER
AND AIR
CONDITIONING
1A-31
FIVE
AMP
TIME DELAY
FUSE
CORD
TO
110
AC
SOURCE
PUMP
INLET
PUMP DISCHARGE
OUTLET
Fig.
44—Vacuum Pump
the use of weighing equipment necessary with the larger
drum. The single can Valve J-6271 can be used for com-
pleting the charge and for miscellaneous operations such
Fig.
45-R-12 Disposable Cans
as flushing. The valves are installed by piercing the top
seal of the cans.
Evacuating and charging procedures later in this sec-
tion will make use of the J-8393 Charging Station which
uses the 25 lb. drum of refrigerant.
COMPRESSOR OIL
Special refrigeration lubricant should be used in the
system. It is available in 1 quart graduated bottles
through Parts Stock. This oil is as free from moisture
and contaminants as it is possible to attain by commercial
processes. This condition should be preserved by im-
mediately capping the bottle when not in use.
See "Air Conditioning System Capacities" for the
total system oil capacity.
Due to the porosity of the refrigerant hoses and con-
nections, the system refrigerant level will show a definite
drop after a period of time. Since the compressor oil is
carried throughout the entire system mixed with the
refrigerant a low refrigerant level will cause a dangerous
lack of lubrication. Therefore the refrigerant charge in
the system has a definite tie-in with the amount of oil
found in the compressor and an insufficient charge may
eventually lead to an oil build-up in the evaporator.
COMPRESSOR SERIAL NUMBER
The compressor serial number is located on the serial
number plate on top of the compressor. The serial num-
ber consists of a series of numbers and letters. This
serial number should be referenced on all forms and
correspondence related to the servicing of this part.
INSPECTION AND PERIODIC SERVICE
PRE-DELIVERY INSPECTION
1.
Check that engine exhaust is suitably ventilated.
2.
Check the belt for proper tension.
3.
With controls positioned for operation of the system,
operate the unit for ten minutes at approximately
2000 rpm. Observe the clutch pulley bolt to see that
compressor is operating at the same speed as the
clutch pulley. Any speed variation indicates clutch
slippage.
Before turning off the engine, check the sight glass
to see that the.unit has a sufficient Refrigerant
charge. The glass should be clear, although during
milder weather it may show traces of bubbles. Foam
in.
the flow indicates a low charge. No liquid visible
indicates no charge.
CHEVROLET CHASSIS SERVICE MANUAL
HEATER AND AIR CONDITIONING 1A-32
5.
Check hose clamp connections. If clamp screw torque
is less than 10 lb. in., retighten to 20-25 lb. in. Do
not tighten to new hose specifications or hose leak-
age may occur.
6. If there is evidence of an oil leak, check the com-
pressor to see that the oil charge is satisfactory.
7.
Check the system controls for proper operation.
6000 MILE INSPECTION
1.
Check unit for any indication of a refrigerant leak.
2.
If there is an indication of an oil leak, check the
compressor proper oil charge.
3.
Check sight glass for proper charge of Refrigerant-
12.
4.
Tighten the compressor brace and support bolts and
check the belt tension.
5.
Check hose clamp connections as in step 5 above.
6. Check thermostatic switch setting (Universal and
All-Weather Systems.)
PERIODIC SERVICE
• Inspect condenser regularly to be sure that it is not
plugged with leaves or other foreign material.
Fig.
46—Compressor Connector Block—Typical
• Check evaporator drain tubes regularly for dirt or
restrictions.
• At least once a year, check the system for proper
refrigerant charge and the flexible hoses for brittle-
ness,
wear or leaks.
• Every 6000 miles check sight glass for low refriger-
ant level.
• Check belt tension regularly.
• Every week - during winter months or other periods
when the system is not being operated regularly- run
the system, set for maximum cooling, for 10 or 15
minutes to insure proper lubrication of seals and
moving parts.
INSTALLING GAUGE SET TO CHECK
SYSTEM OPERATION
Compressor Suction and Discharge Connector
Compressor connector assemblies used on all vehicles
are of the same basic design consisting of the inlet
(suction) and outlet (discharge) connections, gauge fittings
and muffler and, in general, the assemblies differ only in
the location of the gauge fittings.
On Universal and Four-Season Systems the outlet line
extends along side of and toward the front of the com-
pressor and the muffler in the line is bracket mounted to
the compressor body. In all Universal Systems the gauge
fittings for both low and high pressure sides of the sys-
tem are located in the connector body. On Four-Season
Systems the high pressure gauge fitting is located on the
muffler and the low pressure gauge fitting is on the POA
Valve.
The Chevy n All-Weather System compressor con-
nector assembly is similar to the Universal System
connector assembly described above except that the
muffler extends straight out from the connector and
is not bracket mounted to the compressor.
Universal and Chevy II All-Weather System
1.
Install Gauge Adapter (J-5420 or J-9459) onto the
high and low pressure hoses of the gauge set.
2.
With the engine stopped, remove the caps from the
cored valve gauge, connectors on the compressor
fittings block.
3.
Connect the gauge lines with adapters to the threaded
connectors on the compressor fittings block.
Four-Season and Comfortron Systems
Installation of the gauge set onto the Four-Season and
Comfortron systems is accomplished in the same manner
as outlined above except that system performance checks
must be performed with the low pressure hose line and
adapter attached to the fitting on the POA valve. Charging
procedures should be performed with the high pressure
gauge line connected to the high pressure gauge fitting
located on the outlet line muffler and the low pressure
gauge line attached to the POA fitting.
CAUTION: When removing gauge lines from
the compressor fittings block be sure to remove
the adapters from the fittings rather than the
gauge lines from the adapters.
PERFORMANCE TEST
This test may be conducted to determine if the system
is performing in a satisfactory manner and should be
used as a guide by the serviceman in diagnosing trouble
CHEVROLET CHASSIS SERVICE MANUAL