EC-208
[VQ35DE]
DTC P0102, P0103 MAF SENSOR
Revision: 2007 April2007 M35/M45
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again.
If OK, go to next step.
6. Turn ignition switch OFF.
7. Disconnect mass air flow sensor harness connector and reconnect it again.
8. Perform step 2 to 4 again.
9. If NG, clean or replace mass air flow sensor.
Without CONSULT-II
1. Reconnect all harness connectors disconnected.
2. Start engine and warm it up to normal operating temperature.
3. Check voltage between ECM terminal 51 (Mass air flow sensor
signal) and ground.
*: Check for linear voltage rise in response to engine being increased to about
4,000 rpm.
4. If the voltage is out of specification, proceed the following.
a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
Crushed air ducts
Malfunctioning seal of air cleaner element
Uneven dirt of air cleaner element
Improper specification of intake air system parts
b. If NG, repair or replace malfunctioning part and perform step 2 and 3 again.
If OK, go to next step.
5. Turn ignition switch OFF.
6. Disconnect mass air flow sensor harness connector and reconnect it again.
7. Perform step 2 and 3 again.
8. If NG, clean or replace mass air flow sensor.
Removal and InstallationNBS004V4
MASS AIR FLOW SENSOR
Refer to EM-19, "AIR CLEANER AND AIR DUCT" .
Condition Voltage V
Ignition switch ON (Engine stopped.) Approx. 0.4
Idle (Engine is warmed-up to normal
operating temperature.)0.9 - 1.2
2,500 rpm (Engine is warmed-up to
normal operating temperature.)1.6 - 1.9
Idle to about 4,000 rpm 0.9 - 1.2 to Approx. 2.4*
PBIB1106E
DTC P0112, P0113 IAT SENSOR
EC-209
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
DTC P0112, P0113 IAT SENSORPFP:22630
Component DescriptionNBS004V5
The intake air temperature sensor is built-into mass air flow sensor
(1). The sensor detects intake air temperature and transmits a signal
to the ECM.
The temperature sensing unit uses a thermistor which is sensitive to
the change in temperature. Electrical resistance of the thermistor
decreases in response to the temperature rise.
*: This data is reference value and is measured between ECM terminal 34 (Intake air
temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output
voltage. Doing so may result in damage to the ECM's transistor.
Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicNBS004V6
DTC Confirmation ProcedureNBS004V7
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Turn ignition switch ON.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. Wait at least 5 seconds.
4. If 1st trip DTC is detected, go to EC-212, "
Diagnostic Procedure"
.
PBIA9559J
Intake air temperature
°C (°F)Voltage* V Resistance kΩ
25 (77) 3.3 1.800 - 2.200
80 (176) 1.2 0.283 - 0.359
SEF012P
DTC No.Trouble diagnosis
nameDTC detecting condition Possible cause
P0112
0112Intake air tempera-
ture sensor circuit
low inputAn excessively low voltage from the sensor is
sent to ECM.
Harness or connectors
(The sensor circuit is open or shorted.)
Intake air temperature sensor
P0113
0113Intake air tempera-
ture sensor circuit
high inputAn excessively high voltage from the sensor is
sent to ECM.
SEF058Y
DTC P0112, P0113 IAT SENSOR
EC-213
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
3. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT
1. Turn ignition switch OFF.
2. Disconnect ECM harness connector.
3. Check harness continuity between mass air flow sensor terminal 6 and ECM terminal 67.
Refer to Wiring Diagram.
4. Also check harness for short to ground and short to power.
OK or NG
OK >> GO TO 4.
NG >> Repair open circuit or short to ground or short to power in harness or connectors.
4. CHECK INTAKE AIR TEMPERATURE SENSOR
Refer to EC-213, "
Component Inspection" .
OK or NG
OK >> GO TO 5.
NG >> Replace mass air flow sensor (with intake air temperature sensor).
5. CHECK INTERMITTENT INCIDENT
Refer to EC-153, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
>>INSPECTION END
Component InspectionNBS004VA
INTAKE AIR TEMPERATURE SENSOR
1. Check resistance between mass air flow sensor (1) terminals 5
and 6 under the following conditions.
2. If NG, replace mass air flow sensor (with intake air temperature
sensor).
Removal and InstallationNBS004VB
MASS AIR FLOW SENSOR
Refer to EM-19, "AIR CLEANER AND AIR DUCT" . Continuity should exist.
Intake air temperature °C (°F) Resistance kΩ
25 (77) 1.800 - 2.200
PBIA9559J
SEF012P
EC-222
[VQ35DE]
DTC P0122, P0123 TP SENSOR
Revision: 2007 April2007 M35/M45
Specification data are reference values and are measured between each terminal and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
Diagnostic ProcedureNBS004VO
1. CHECK GROUND CONNECTIONS
1. Turn ignition switch OFF.
2. Loosen and retighten two ground screws on the body.
Refer to EC-160, "
Ground Inspection" .
OK or NG
OK >> GO TO 2.
NG >> Repair or replace ground connections.
TER-
MINAL
NO.WIRE
COLORITEM CONDITION DATA (DC Voltage)
47 GSensor power supply
(Throttle position sensor)[Ignition switch: ON]Approximately 5V
50 W Throttle position sensor 1[Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully releasedMore than 0.36V
[Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully depressedLess than 4.75V
66 BSensor ground
(Throttle position sensor)[Engine is running]
Warm-up condition
Idle speedApproximately 0V
69 R Throttle position sensor 2[Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully releasedLess than 4.75V
[Ignition switch: ON]
Engine stopped
Selector lever: D
Accelerator pedal: Fully depressedMore than 0.36V
91 BRSensor power supply
(APP sensor 2)[Ignition switch: ON]Approximately 5V
1. Body ground M70 2. Body ground M16
PBIB2782E
EC-228
[VQ35DE]
DTC P0125 ECT SENSOR
Revision: 2007 April2007 M35/M45
3. CHECK THERMOSTAT OPERATION
When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine
coolant does not flow.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace thermostat. Refer to CO-29, "
WATER INLET AND THERMOSTAT ASSEMBLY"
.
4. CHECK INTERMITTENT INCIDENT
Refer to EC-153, "
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .
Refer to EC-216, "
Wiring Diagram" .
>>INSPECTION END
Component InspectionNBS004VV
ENGINE COOLANT TEMPERATURE SENSOR
1. Check resistance between engine coolant temperature sensor
terminals 1 and 2 as shown in the figure.
2. If NG, replace engine coolant temperature sensor.
Removal and InstallationNBS004VW
ENGINE COOLANT TEMPERATURE SENSOR
Refer to CO-31, "WATER OUTLET AND WATER PIPING" .
PBIB2005E
Temperature°C (°F) Resistance kΩ
20 (68) 2.1 - 2.9
50 (122) 0.68 - 1.00
90 (194) 0.236 - 0.260
SEF012P
DTC P0127 IAT SENSOR
EC-229
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
DTC P0127 IAT SENSORPFP:22630
Component DescriptionNBS004VX
The intake air temperature sensor is built-into mass air flow sensor
(1). The sensor detects intake air temperature and transmits a signal
to the ECM.
The temperature sensing unit uses a thermistor which is sensitive to
the change in temperature. Electrical resistance of the thermistor
decreases in response to the temperature rise.
*: This data is reference value and is measured between ECM terminal 34 (Intake air
temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output
voltage. Doing so may result in damage to the ECM's transistor.
Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicNBS004VY
DTC Confirmation ProcedureNBS004VZ
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
CAUTION:
Always drive vehicle at a safe speed.
TESTING CONDITION:
This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road
test is expected to be easier, it is unnecessary to lift the vehicle.
WITH CONSULT-II
1. Wait until engine coolant temperature is less than 90°C (194°F)
a. Turn ignition switch ON.
PBIA9559J
Intake air temperature
°C (°F)Voltage* V Resistance kΩ
25 (77) 3.3 1.800 - 2.200
80 (176) 1.2 0.283 - 0.359
SEF012P
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0127
0127Intake air temperature
too highRationally incorrect voltage from the sensor is
sent to ECM, compared with the voltage signal
from engine coolant temperature sensor.
Harness or connectors
(The sensor circuit is open or shorted)
Intake air temperature sensor
DTC P0127 IAT SENSOR
EC-231
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
Component InspectionNBS004W1
INTAKE AIR TEMPERATURE SENSOR
1. Check resistance between mass air flow sensor (1) terminals 5
and 6 under the following conditions.
2. If NG, replace mass air flow sensor (with intake air temperature
sensor).
Removal and InstallationNBS004W2
MASS AIR FLOW SENSOR
Refer to EM-19, "AIR CLEANER AND AIR DUCT" .
Intake air temperature °C (°F) Resistance kΩ
25 (77) 1.800 - 2.200
PBIA9559J
SEF012P
EC-234
[VQ35DE]
DTC P0130, P0150 A/F SENSOR 1
Revision: 2007 April2007 M35/M45
DTC P0130, P0150 A/F SENSOR 1PFP:22693
Component DescriptionNBS004W8
The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is the combination of a
Nernst concentration cell (sensor cell) with an oxygen-pump cell,
which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 <
< air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the A/F sensor 1 is able to
indicate air/fuel ratio by this pumping of current. In addition, a heater
is integrated in the sensor to ensure the required operating tempera-
ture of 700 - 800°C (1,292 - 1,472°F).
CONSULT-II Reference Value in Data Monitor ModeNBS004W9
Specification data are reference values.
On Board Diagnosis LogicNBS005SF
To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/
F) sensor 1 signal fluctuates according to fuel feedback control.
DTC Confirmation ProcedureNBS005SG
Perform PROCEDURE FOR MALFUNCTION A first.
If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
TESTING CONDITION:
Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
PROCEDURE FOR MALFUNCTION A
With CONSULT-II
1. Start engine and warm it up to normal operating temperature.
SEF579Z
SEF580Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming up Maintaining engine speed at 2,000 rpm Fluctuates around 1.5 V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P0130
0130
(Bank 1)
Air fuel ratio (A/F) sensor 1
circuitA)The A/F signal computed by ECM from the A/F
sensor 1 signal is constantly in the range other
than approx. 1.5V.
Harness or connectors
(The A/F sensor 1 circuit is open
or shorted.)
Air fuel ratio (A/F) sensor 1 P0150
0150
(Bank 2)B)The A/F signal computed by ECM from the A/F
sensor 1 signal is constantly approx. 1.5V.