ON BOARD DIAGNOSTIC (OBD) SYSTEM
EC-775
[VK45DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are
stored in the ECM memory, and the MIL will come on. For details, refer to EC-756, "
Two Trip Detection
Logic" .
The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is
counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction
occurs while counting, the counter will reset.
The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A)
without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and
Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times
(driving pattern C) without the same malfunction recurring. The “TIME” in “SELF-DIAGNOSTIC
RESULTS” mode of CONSULT-II will count the number of times the vehicle is driven.
The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.
SUMMARY CHART
For details about patterns B and C under “Fuel Injection System” and “Misfire”, see EC-777, "EXPLANATION FOR DRIVING PAT-
TERNS FOR “MISFIRE
For details about patterns A and B under Other, see EC-779, "
EXPLANATION FOR DRIVING PATTERNS EXCEPT FOR “MISFIRE
*1: Clear timing is at the moment OK is detected.
*2: Clear timing is when the same malfunction is detected in the 2nd trip.Items Fuel Injection System Misfire Other
MIL (goes off) 3 (pattern B) 3 (pattern B) 3 (pattern B)
DTC, Freeze Frame Data (no
display)80 (pattern C) 80 (pattern C) 40 (pattern A)
1st Trip DTC (clear)
1 (pattern C), *
11 (pattern C), *11 (pattern B)
1st Trip Freeze Frame Data
(clear)*1, *2 *1, *2 1 (pattern B)
EC-776
[VK45DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2007 April2007 M35/M45
RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR “MISFIRE
”
*1: When the same malfunction is
detected in two consecutive trips,
MIL will light up.*2: MIL will go off after vehicle is driven
3 times (pattern B) without any mal-
functions.*3: When the same malfunction is
detected in two consecutive trips, the
DTC and the freeze frame data will
be stored in ECM.
*4: The DTC and the freeze frame data
will not be displayed any longer after
vehicle is driven 80 times (pattern C)
without the same malfunction. (The
DTC and the freeze frame data still
remain in ECM.)*5: When a malfunction is detected for
the first time, the 1st trip DTC and
the 1st trip freeze frame data will be
stored in ECM.*6: The 1st trip DTC and the 1st trip
freeze frame data will be cleared at
the moment OK is detected.
*7: When the same malfunction is
detected in the 2nd trip, the 1st trip
freeze frame data will be cleared.*8: 1st trip DTC will be cleared when
vehicle is driven once (pattern C)
without the same malfunction after
DTC is stored in ECM.
SEF392S
EC-778
[VK45DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2007 April2007 M35/M45
RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS EXCEPT FOR
“MISFIRE
*1: When the same malfunction is
detected in two consecutive trips,
MIL will light up.*2: MIL will go off after vehicle is driven
3 times (pattern B) without any mal-
functions.*3: When the same malfunction is
detected in two consecutive trips, the
DTC and the freeze frame data will
be stored in ECM.
*4: The DTC and the freeze frame data
will not be displayed any longer after
vehicle is driven 40 times (pattern A)
without the same malfunction.
(The DTC and the freeze frame data
still remain in ECM.)*5: When a malfunction is detected for
the first time, the 1st trip DTC and
the 1st trip freeze frame data will be
stored in ECM.*6: 1st trip DTC will be cleared after
vehicle is driven once (pattern B)
without the same malfunction.
*7: When the same malfunction is
detected in the 2nd trip, the 1st trip
freeze frame data will be cleared.
SEF393SD
EC-796
[VK45DE]
TROUBLE DIAGNOSIS
Revision: 2007 April2007 M35/M45
10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE
Inspect according to Diagnostic Procedure of the system.
NOTE:
The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection
is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-
28, "How to Perform Efficient Diagnosis for an Electrical Incident" .
Is malfunctioning part detected?
Yes >> GO TO 11.
No >> Monitor input data from related sensors or check voltage of related ECM terminals using CON-
SULT-II. Refer to EC-841, "
CONSULT-II Reference Value in Data Monitor" , EC-817, "ECM Termi-
nals and Reference Value" .
11 . REPAIR OR REPLACE THE MALFUNCTIONING PART
1. Repair or replace the malfunctioning part.
2. Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace-
ment.
3. Check DTC. If DTC is displayed, erase it, refer to EC-770, "
HOW TO ERASE EMISSION-RELATED
DIAGNOSTIC INFORMATION" .
>> GO TO 12.
12. FINAL CHECK
When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again,
and then make sure that the malfunction have been repaired securely.
When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure
that the symptom is not detected.
OK or NG
NG (DTC*1 is detected)>>GO TO 10.
NG (Symptom remains)>>GO TO 6.
OK >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*
1 in ECM
and TCM (Transmission Control Module). (Refer to EC-770, "
HOW TO ERASE EMISSION-
RELATED DIAGNOSTIC INFORMATION" and AT- 4 1 , "HOW TO ERASE DTC" .)
2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-
767, "Driving Pattern" .
3.INSPECTION END
*1: Include 1st trip DTC.
*2: Include 1st trip freeze frame data.
DIAGNOSTIC WORKSHEET
Description
There are many operating conditions that lead to the malfunction of
engine components. A good grasp of such conditions can make trou-
bleshooting faster and more accurate.
In general, each customer feels differently about a incident. It is
important to fully understand the symptoms or conditions for a cus-
tomer complaint.
Utilize a diagnostic worksheet like the one on the next page in order
to organize all the information for troubleshooting.
Some conditions may cause the MIL to come on steady or blink and
DTC to be detected. Examples:
Vehicle ran out of fuel, which caused the engine to misfire.
Fuel filler cap was left off or incorrectly screwed on, allowing fuel
to evaporate into the atmosphere.
SEF907L
TROUBLE DIAGNOSIS
EC-829
[VK45DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
*: This function is not necessary in the usual service procedure.
SELF-DIAG RESULTS MODE
Self Diagnostic Item
Regarding items of DTC and 1st trip DTC, refer to EC-757, "Emission-Related Diagnostic Information" .
Freeze Frame Data and 1st Trip Freeze Frame Data
EVAP SYSTEM CLOSE CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN
ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE
FOLLOWING CONDITIONS.
IGN SW ON
ENGINE NOT RUNNING
AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).
NO VACUUM AND NO HIGH PRESSURE IN EVAP SYS-
TEM
FUEL TANK TEMP. IS MORE THAN 0°C (32°F).
WITHIN 10 MINUTES AFTER STARTING “EVAP SYS-
TEM CLOSE”
WHEN TRYING TO EXECUTE “EVAP SYSTEM CLOSE”
UNDER THE CONDITION EXCEPT ABOVE, CONSULT-
II WILL DISCONTINUE IT AND DISPLAY APPROPRI-
ATE INSTRUCTION.
NOTE:
WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY
“BATTERY VOLTAGE IS LOW. CHARGE BATTERY”,
EVEN IN USING CHARGED BATTERY.When detecting EVAP vapor leak
point of EVAP system
VIN REGISTRATION
IN THIS MODE VIN IS REGISTERED IN ECM When registering VIN in ECM
TARGET IDLE RPM ADJ*
IDLE CONDITION When setting target idle speed
TARGET IGN TIM ADJ*
IDLE CONDITION When adjusting target ignition tim-
ing WORK ITEM CONDITION USAGE
Freeze frame data
item*Description
DIAG TROUBLE
CODE
[PXXXX]
The engine control component part/control system has a trouble code, it is displayed as PXXXX. (Refer to
EC-718, "
INDEX FOR DTC" .)
FUEL SYS-B1
“Fuel injection system status” at the moment a malfunction is detected is displayed.
One mode in the following is displayed.
Mode2: Open loop due to detected system malfunction
Mode3: Open loop due to driving conditions (power enrichment, deceleration enleanment)
Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control
Mode5: Open loop - has not yet satisfied condition to go to closed loop FUEL SYS-B2
CAL/LD VALUE [%]
The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP
[°C] or [°F]
The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRM-B1 [%]
“Long-term fuel trim” at the moment a malfunction is detected is displayed.
The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule
than short-term fuel trim. L-FUEL TRM-B2 [%]
S-FUEL TRM-B1 [%]
“Short-term fuel trim” at the moment a malfunction is detected is displayed.
The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel
schedule. S-FUEL TRM-B2 [%]
ENGINE SPEED
[rpm]
The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED
[km/h] or [mph]
The vehicle speed at the moment a malfunction is detected is displayed.
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT
EC-857
[VK45DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2007 April2007 M35/M45
TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENTPFP:00006
DescriptionNBS005AV
Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function
returns to normal without intervention). It is important to realize that the symptoms described in the customer's
complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of intermittent
incidents occurrences is poor electrical connections. Because of this, the conditions under which the incident
occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may
not indicate the specific malfunctioning area.
Common Intermittent Incidents Report Situations
Diagnostic ProcedureNBS005AW
1. INSPECTION START
Erase (1st trip) DTCs. Refer to EC-770, "
HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMA-
TION" .
>> GO TO 2.
2. CHECK GROUND TERMINALS
Check ground terminals for corroding or loose connection.
Refer to EC-864, "
Ground Inspection" .
OK or NG
OK >> GO TO 3.
NG >> Repair or replace.
3. SEARCH FOR ELECTRICAL INCIDENT
Perform GI-28, "
How to Perform Efficient Diagnosis for an Electrical Incident" , “INCIDENT SIMULATION
TESTS”.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace.
4. CHECK CONNECTOR TERMINALS
Refer to GI-25, "
How to Check Terminal" , “HOW TO PROBE CONNECTORS”, “How to Check Enlarged Con-
tact Spring of Terminal”.
OK or NG
OK >>INSPECTION END
NG >> Repair or replace connector.
STEP in Work Flow Situation
2 The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].
3 or 4 The symptom described by the customer does not recur.
5 (1st trip) DTC does not appear during the DTC Confirmation Procedure.
10 The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.
EC-864
[VK45DE]
POWER SUPPLY AND GROUND CIRCUIT
Revision: 2007 April2007 M35/M45
Ground Inspection NBS005AZ
Ground connections are very important to the proper operation of electrical and electronic circuits. Ground
connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can
become an unwanted resistance. This unwanted resistance can change the way a circuit works.
Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drasti-
cally affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even
when the ground connection looks clean, there can be a thin film of rust on the surface.
When inspecting a ground connection follow these rules:
Remove the ground bolt or screw.
Inspect all mating surfaces for tarnish, dirt, rust, etc.
Clean as required to assure good contact.
Reinstall bolt or screw securely.
Inspect for “add-on” accessories which may be interfering with the ground circuit.
If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the
wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one
eyelet make sure no ground wires have excess wire insulation.
For detailed ground distribution information, refer to PG-45, "
Ground Distribution" .
PBIB1870E
EC-872
[VK45DE]
DTC P0011, P0021 IVT CONTROL
Revision: 2007 April2007 M35/M45
DTC Confirmation ProcedureNBS005BC
CAUTION:
Always drive at a safe speed.
NOTE:
If DTC P0011 or P0021 is displayed with DTC P0075, P0081, P1140 or P1145, first perform the trou-
ble diagnosis for EC-899, "
DTC P0075, P0081 IVT CONTROL SOLENOID VALVE" or EC-1203, "DTC
P1140, P1145 IVT CONTROL POSITION SENSOR" .
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait
at least 10 seconds before conducting the next test.
TESTING CONDITION:
Before performing the following procedure, confirm that battery voltage is between 10V and 16V at
idle.
PROCEDURE FOR MALFUNCTION A
With CONSULT-II
1. Turn ignition switch ON.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. Maintain the following conditions for at least 10 consecutive sec-
onds.
4. Maintain the following conditions for at least 20 consecutive sec-
onds.
5. If the 1st trip DTC is detected, go to EC-877, "
Diagnostic Procedure" .
With GST
Follow the procedure “With CONSULT-II” above.
PROCEDURE FOR MALFUNCTION B
With CONSULT-II
1. Turn ignition switch ON.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. Maintain the following conditions for at least 10 consecutive sec-
onds.
4. If the 1st trip DTC is detected, go to EC-877, "
Diagnostic Proce-
dure" .
With GST
Follow the procedure “With CONSULT-II” above.
ENG SPEED More than 2,000 rpm (A constant rotation is maintained.)
COOLAN TEMP/S More than 70°C (158°F)
Selector lever 1st or 2nd position
Driving location uphillDriving vehicle uphill
(Increased engine load will help maintain the driving con-
ditions required for this test.)
ENG SPEED Idle
COOLAN TEMP/S More than 70°C (158°F)
Selector lever P or N position
SEF353Z
ENG SPEED 1,700 - 3,175 rpm (A constant rotation is maintained.)
COOLAN TEMP/S 70 - 105°C (158 - 221°F)
Selector lever 1st or 2nd position
Driving location uphillDriving vehicle uphill
(Increased engine load will help maintain the driving con-
ditions required for this test.)
SEF353Z