6E-58 3.5L ENGINE DRIVEABILITY AND EMISSIONS
GENERAL DESCRIPTION FOR
ELECTRONIC IGNITION SYSTEM IGNITION
COILS & CONTROL
A separate coil-at-plug module is located at each spark
plug.
The coil-at-plug module is attached to the engine with
two screws. It is installed directly to the spark plug by an
electrical contact inside a rubber boot.
A three way connector provides 12 volts primary supply
from the ignition coil fuse, a ground switching trigge
r
line from the ECM, and ground.
The ignition control spark timing is the ECM's method o
f
controlling the spark advance and the ignition dwell.
The ignition control spark advance and the ignition dwell
are calculated by the ECM using the following inputs.
Engine speed
Crankshaft position (CKP) sensor
Camshaft position (CMP) sensor
Engine coolant temperature (ECT) sensor
Throttle position sensor
Park or neutral position switch
Vehicle speed sensor
ECM and ignition system supply voltage
Based on these sensor signal and engine load
information, the ECM sends 5V to each ignition coil
requiring ignition. This signal sets in the powe
r
transistor of the ignition coil to establish a grounding
circuit for the primary coil, applying battery voltage to
the primary coil.
At the ignition timing, the ECM stops sending the 5V
signal voltage. Under this condition the power transistor
of the ignition coil is set off to cut the battery voltage to
the primary coil, thereby causing a magnetic field
generated in the primary coil to collapse.
On this moment a line of magnetic force flows to the
secondary coil, and when this magnetic line crosses the
coil, high voltage induced by the secondary ignition
circuit to flow through the spark plug to the ground.
Ignition Control ECM Output
The ECM provides a zero volt (actually about 100 mV to
200 mV) or a 5-volt output signal to the ignition control
(IC) module. Each spark plug has its own primary and
secondary coil module ("coil-at-plug") located at the
spark plug itself. When the ignition coil receives the
5-volt signal from the ECM, it provides a ground path fo
r
the B+ supply to the primary side of the coil-at -plug
module. This energizes the primary coil and creates a
magnetic field in the coil-at-plug module. When the
ECM shuts off the 5-volt signal to the ignition control
module, the ground path for the primary coil is broken.
The magnetic field collapses and induces a high voltage
secondary impulse which fires the spark plug and
ignites the air/fuel mixture.
The circuit between the ECM and the ignition coil is
monitored for open circuits, shorts to voltage, and
shorts to ground. If the ECM detects one of these
events, it will set one of the following DTCs:
P0351: Ignition coil Fault on Cylinder #1
P0352: Ignition coil Fault on Cylinder #2
P0353: Ignition coil Fault on Cylinder #3
P0354: Ignition coil Fault on Cylinder #4
P0355: Ignition coil Fault on Cylinder #5
P0356: Ignition coil Fault on Cylinder #6
Spark Plug
Although worn or dirty spark plugs may give satisfactory
operation at idling speed, they frequency fail at highe
r
engine speeds. Faulty spark plugs may cause poor fuel
economy, power loss, loss of speed, hard starting and
generally poor engine performance. Follow the
scheduled maintenance service recommendations to
ensure satisfactory spark plug performance. Refer to
Maintenance and Lubrication.
Normal spark plug operation will result in brown to
grayish-tan deposits appearing on the insulator portion
of the spark plug. A small amount of red-brown, yellow,
and white powdery material may also be present on the
insulator tip around the center electrode. These
deposits are normal combustion by-products of fuels
and lubricating oils with additives. Some electrode wea
r
will also occur. Engines which are not running properly
are often referred to as “misfiring." This means the
ignition spark is not igniting the air/fuel mixture at the
proper time.
Spark plugs may also misfire due to fouling, excessive
gap, or a cracked or broken insulator. If misfiring
occurs before the recommended replacement interval,
locate and correct the cause.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-69
GENERAL SERVICE INFORMATION
Aftermarket Electrical and Vacuum
Equipment
Aftermarket (add-on) electrical and vacuum equipment
is defined as any equipment which connects to the
vehicle's electrical or vacuum systems that is installed
on a vehicle after it leaves the factory. No allowances
have been made in the vehicle design for this type o
f
equipment.
NOTE: No add-on vacuum equipment should be
added to this vehicle.
NOTE: Add-on electrical equipment must only be
connected to the vehicle's electrical system at the
battery (power and ground).
Add-on electrical equipment, even when installed to
these guidelines, may still cause the powertrain system
to malfunction. This may also include equipment no
t
connected to the vehicle electrical system such as
portable telephones and radios. Therefore, the firs
t
step in diagnosing any powertrain problem is to
eliminate all aftermarket electrical equipment from the
vehicle. After this is done, if the problem still exists, i
t
may be diagnosed in the normal manner.
Electrostatic Discharge Damage
Electronic components used in the ECM are often
designed to carry very low voltage. Electronic
components are susceptible to damage caused by
electrostatic discharge. Less than 100 volts of static
electricity can cause damage to some electronic
components. By comparison, it takes as much as 4000
volts for a person to feel even the zap of a static
discharge.
TS23793
There are several ways for a person to become
statically charged. The most common methods o
f
charging are by friction and induction.
An example of charging by friction is a person sliding
across a vehicle seat.
Charge by induction occurs when a person with well
insulated shoes stands near a highly charged objec
t
and momentary touches ground. Charges of the
same polarity are drained off leaving the person
highly charged with the opposite polarity. Static
charges can cause damage, therefore it is importan
t
to use care when handling and testing electronic
components.
NOTE: To prevent possible electrostatic discharge
damage, follow these guidelines:
Do not touch the ECM connector pins or soldered
components on the ECM circuit board.
Do not open the replacement part package until
the part is ready to be installed.
Before removing the part from the package,
ground the package to a known good ground on
the vehicle.
If the part has been handled while sliding across
the seat, while sitting down from a standing
position, or while walking a distance, touch a
known good ground before installing the part.
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E -91
SERVICE PROGRAMMING SYSTEM (SPS)
The procedure to program the control unit by using the
Service Programming System (SPS) software
contained in TIS2000 is explained below.
NOTE:
If the Engine Control Module (ECM) was
programmed, the Immobilizer System must be
linked to the ECM: Refer to section 11
"Immobilizer System-ECM replacement" for the
ECM/Immobilizer linking procedure.
Should Tech2 display "SPS Procedure was not
successful", engine will not start, but no DTCs
are present, low battery voltage or poo
r
electrical connections should be the primary
suspects. Perform the SPS procedure again
after rectifying the fault/s.
IMPORTANT:
Perform the following checks before attempting to
program the control unit:
The Tech2 PCMCIA card is programmed with
the latest software release.
The latest release of TIS2000 is loaded on the
PC.
The vehicle battery is fully charged.
The control unit to be programmed is
connected to the vehicle.
1. Preparations of TIS 2000
1.
Connect Tech 2 to P/C.
2.
Check to see if Hardware Key is plugged into Port.
3.
Activate TIS 2000 by P/C.
4.
On the activating screen of TIS2000, choose
"Service Programming System"
5.
On the screen of "Diagnostic Tester and
Processing Program Selection", choose the one
that will comply with the following.
Diagnostic Tech 2 in use
New programming by the existing module or new
programming by the replaced/new module.
Fixing position of the control unit.
6.
Upon completion of the selection, push the button
of "Next".
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-233
Step Action Value (s) Yes No
10 Using the DVM and check the injector signal circuit.
1. Ignition "On", engine "Off".
2. Disconnect the injector connector for the affected
cylinder.
3. Check the circuit for short to battery voltage circuit.
Was the DVM indicated battery voltage?
E-6/E-7/E-8/E-9/
E-51/E-52
V
- Repair faulty
harness and
verify repair Go to Step 12
11
Replace the injector for the affected cylinder.
Was the problem solved?
- Verify repair Go to Step 12
12
Is the ECM programmed with the latest software
release?
If not, download the latest software to the ECM using
the "SPS (Service Programming System)".
Was the problem solved?
- Verify repair Go to Step 13
13
Replace the ECM.
Is the action complete?
IMPORTANT: The replacement ECM must be
programmed. Refer to section of the Service
Programming System (SPS) in this manual. Following
ECM programming, the immobilizer system (if
equipped) must be linked to the ECM. Refer to section
11 “Immobilizer System-ECM replacement” for the
ECM/Immobilizer linking procedure.
- Verify repair -
6E-262 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Step Action Value (s) Yes No
10
Using the DVM and check the EGR valve solenoid
signal circuit.
1. Ignition "Off", engine "Off".
2. Disconnect the EGR valve connector.
3. Check the circuit for short to battery voltage circuit.
Was the DVM indicated battery voltage?
E-76
V
-
Repair faulty
harness and
verify repair
Go to Step 11
11
Substitute a known good EGR valve and recheck.
Was the problem solved?
- Go to Step 12 Go to Step 13
12
Replace the EGR valve.
Was the problem solved?
- Verify repair Go to Step 13
13
Is the ECM programmed with the latest software
release?
If not, download the latest software to the ECM using
the "SPS (Service Programming System)".
Was the problem solved?
- Verify repair Go to Step 14
14
Replace the ECM.
Is the action complete?
IMPORTANT: The replacement ECM must be
programmed. Refer to section of the Service
Programming System (SPS) in this manual. Following
ECM programming, the immobilizer system (if
equipped) must be linked to the ECM. Refer to section
11 “Immobilizer System-ECM replacement” for the
ECM/Immobilizer linking procedure.
- Verify repair -
6E-278 3.5L ENGINE DRIVEABILITY AND EMISSIONS
Step Action Value (s) Yes No
9
Using the DVM and check the purge solenoid valve
signal circuit.
1. Ignition "On", engine "Off".
2. Disconnect the purge solenoid valve connector.
3. Check the circuit for short to battery voltage circuit.
Was the DVM indicated battery voltage?
E-66
V
-
Repair faulty
harness and
verify repair
Go to Step 10
10
Substitute a known good purge solenoid valve and
recheck.
Was the problem solved?
- Go to Step 11 Go to Step 12
11
Replace the purge solenoid valve.
Was the problem solved?
- Verify repair Go to Step 12
12
Is the ECM programmed with the latest software
release?
If not, download the latest software to the ECM using
the "SPS (Service Programming System)".
Was the problem solved?
- Verify repair Go to Step 13
13
Replace the ECM.
Is the action complete?
IMPORTANT: The replacement ECM must be
programmed. Refer to section of the Service
Programming System (SPS) in this manual. Following
ECM programming, the immobilizer system (if
equipped) must be linked to the ECM. Refer to section
11 “Immobilizer System-ECM replacement” for the
ECM/Immobilizer linking procedure.
- Verify repair -
3.5L ENGINE DRIVEABILITY AND EMISSIONS 6E-331
ENGINE CRANKS BUT WILL NOT RUN
DEFINITIONS: Engine cranks, but will not run. (The
engine never start.)
NOTE: The replacement ECM must be programmed.
Refer to section of the Service Programming
System (SPS) in this manual. Following ECM
programming, the immobilizer system (if equipped)
must be linked to the ECM. Refer to section 11
"Immobilizer System-ECM replacement" for the
ECM/Immobilizer linking procedure.
Should Tech2 display "SPS Procedure was not
successful", engine will not start, but no DTCs are
present, low battery voltage or poor electrical
connections should be the primary
suspects.Perform the SPS procedure again after
rectifying the fault/s.
NOTE: The vehicle with immobilizer system, this
system may be activated. Check the immobilizer
system diagnosis.
Step Action Value (s) Yes No
1
Was the "On-Board Diagnostic (OBD) System Check"
performed?
- Go to Step 2 Go to On Board
Diagnostic (OBD)
System Check
2
1. Perform a bulletin search.
2. If a bulletin that addresses the symptom is found,
correct the condition as instructed in the bulletin.
Was a bulletin found that addresses the symptom?
- Verify repair Go to Step 3
3
Was a visually/physical check performed?
- Go to Step 4 Go to Visual /
physical Check
4
Check the "Meter" fuse (15A), "Engine" fuse (15A),
"IGN Coil" fuse (15A) and "Fuel Pump" fuse (20A). If
the fuse is burnt out, repair as necessary.
Was the problem found?
- Verify repair Go to Step 5
5
Check the ECM grounds to verify that they are clean
and tight. Refer to the ECM wiring diagrams.
Was a problem found?
- Verify repair Go to Step 6
6
Check the fuel quality.
Is the customer using proper fuel?
- Go to Step 7
Replace fuel
7
Visually/physically inspect for the following conditions:
Restrict air intake system. Check for a restricted air
filter element, or foreign objects blocking the air
intake system.
Check for objects blocking the IAC passage or
throttle bore, excessive deposits in the throttle bore
and on the throttle plate.
Check for a condition that causes a large vacuum
leak, such as an incorrectly installed or faulty
crankcase ventilation hose/brake booster hose.
Was a problem found?
- Verify repair Go to Step 8
6E-368 3.5L ENGINE DRIVEABILITY AND EMISSIONS
ON-VEHICLE SERVICE PROCEDURE
ENGINE CONTROL MODULE (ECM)
NOTE:
To prevent possible electrostatic discharge
damage, follow these guidelines:
Do not touch the control module connector pins
or soldered components on the control module
circuit board.
Do not open the replacement part package until
the par is ready to be installed.
Before removing the part from the package,
ground the package to a known good ground on
the vehicle.
If the part has been handled while sliding across
the seat, or while sitting down from a standing
position, or while walking a distance, touch a
known good ground before installing the part.
NOTE:
To prevent internal ECM damage, the ignition must
be in the "OFF" position in order to disconnect o
r
reconnect power to the ECM (for example: battery
cable, ECM pigtail, ECM fuse, jumper cables, etc.).
NOTE:
When replacing the production ECM with a service
ECM, it is important to transfer the broadcast code
and production ECM number to the service ECM
label. This will allow positive identification of ECM
parts throughout the service life of the vehicle.
Location
On the common chamber.
Removal Procedure
1. Disconnect the negative battery cable.
2. Disconnect the two connectors from the ECM.
3. Remove four bolts.
4. Remove the ECM from common chamber.
Installation Procedure
1. Put on the ECM on the common chamber.
2. Tighten the ECM by four bolts.
3. Connect the two connectors to the ECM.
4. Connect the negative battery cable.
NOTE:
The replacement ECM must be programmed.
Service Programming System (SPS) and
Immobilizer programming (if equipped) is
/are
necessary. In case "SPS procedure does not
succeed" or "engine does not run but No DTC afte
r
SPS", low vehicle battery voltage or disconnected
electrical connector (e.g. poor connection of data
link connector) are supposed. Perform the SPS
procedure once again by correct conditions. The
programming ECM will be recovered normally.