1F – 526IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1111
INTAKE AIR TEMPERATURE INTERMITTENT HIGH
VOLTAGE
Circuit Description
The Intake Air Temperature (IAT) sensor is a thermistor
which measures the temperature of the air entering the en-
gine. The Engine Control Module (ECM) applies 5 volts
through a pull–up resistor to the IAT sensor. When the in-
take air is cold, the resistance is high, and the ECM will
monitor a high signal voltage on the IAT signal circuit. If the
intake air is warm, the sensor resistance is lower causing
the ECM to monitor a lower voltage. Diagnostic Trouble
Code (DTC) P1111 will set when the ECM detects an inter-
mittent high signal voltage in the intake air temperature
sensor signal circuit or sensor.
Conditions for Setting the DTC
S IAT is less than –38°C (–36°F).
S DTCs P0502, P0117, P0118 are not set
S Engine has been running for over 120 seconds.
S Vehicles speed is less than 25 km/h (16 mph).
S Calculated air flow is less than 15 g/second.
S Engine Coolant Temperature (ECT) is above 70°C
(158°F).
Action Taken When the DTC Sets
S The ECM will substitute a default value for IAT.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored as Freeze Frame
data.
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check for the following conditions:
S Poor connection at the ECM. Inspect harness con-
nectors for backed–out terminals, improper mating,
broken locks, improperly formed or damaged termi-
nals, and poor terminal–to–wire connection.
S Damaged harness. Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the IAT display on the scan tool while moving con-
nectors and wiring harnesses related to the IAT
sensor. A change in the IAT display will indicate the
location of the fault.
S Reviewing the Fail Records vehicle mileage since
the diagnostic test last failed may help determine
how often the condition that caused the DTC to be
set occurs. This may assist in diagnosing the condi-
tion.
S Use the Temperature vs. Resistance Values table
to evaluate the possibility of a skewed sensor. Re-
fer to ”Temperature vs. Resistance” in this section.
ENGINE CONTROLS 1F – 529
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1112
INTAKE AIR TEMPERATURE INTERMITTENT LOW
VOLTAGE
Circuit Description
The Intake Air Temperature (IAT) sensor is a thermistor
which measures the temperature of the air entering the en-
gine. The Engine Control Module (ECM) applies 5 volts
through a pull–up resistor to the IAT sensor. When the in-
take air is cold, the resistance is high, and the ECM will
monitor a high signal voltage on the IAT signal circuit. If the
intake air is warm, the sensor resistance is lower causing
the ECM to monitor a lower voltage. Diagnostic Trouble
Code (DTC) P1111 will set when the ECM detects an inter-
mittent high signal voltage in the intake air temperature
sensor signal circuit or sensor.
Conditions for Setting the DTC
S IAT is greater than 149°C (300°F).
S DTC P0502 is not set
S Engine has been running for over two minutes.
S Vehicles speed is greater than 50 km/h (31 mph).
Action Taken When the DTC Sets
S The ECM will substitute a default value for IAT.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored as Freeze Frame
data.
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check for the following conditions:
S Poor connection at the ECM. Inspect harness con-
nectors for backed–out terminals, improper mating,
broken locks, improperly formed or damaged termi-
nals, and poor terminal–to–wire connection.
S Damaged harness. Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the IAT display on the scan tool while moving con-
nectors and wiring harnesses related to the IAT
sensor. A change in the IAT display will indicate the
location of the fault.
S Reviewing the Fail Records vehicle mileage since
the diagnostic test last failed may help determine
how often the condition that caused the DTC to be
set occurs. This may assist in diagnosing the condi-
tion.
S Use the Temperature vs. Resistance Values table
to evaluate the possibility of a skewed sensor. Re-
fer to ”Temperature vs. Resistance” in this section.
Test Description
Number(s) below refer to the step number(s) on the Diag-
nostic Chart.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
ENGINE CONTROLS 1F – 543
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1134
FRONT HEATED OXYGEN SENSOR (HO2S1)
TRANSITION RATIO
Circuit Description
The Engine Control Module (ECM) monitors the Front
Heated Oxygen Sensor (HO2S1) activity for 100 seconds
after closed loop and stoichiometric operation have been
established. During the monitoring period the ECM counts
the number of times that the HO2S1 responds from rich
to lean and adds the amount of time it took to complete all
transitions. With this information, an average time for all
transitions can be determined. The ECM then divides the
–to–lean average by the lean–to–rich average to obtain
the ratio. If the HO2S1 transition time ratio is not within the
range, Diagnostic Trouble Code (DTC) P1134 will be set,
indicating that the HO2S1 is not responding as expected
to changes in exhaust oxygen content.
Conditions for Setting the DTC
S HO2S1 rich–to–lean and lean–to rich transition ratio
is out of specification(between 0.375 and 3.5).
S Closed Loop stoichiometry.
S Engine Coolant Temperature (ECT) is greater than
70°C (158°F).
S System voltage is greater than 10 volts.
S Engine run time is greater than 60 seconds.
S Purge Duty Cycle (DC) is less than 20%.S Engine speed is between 1600 and 4300 rpm.
S Calculated airflow is between 9 and 40 g/sec.
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0131, P0132, P0134, P0135,
P1167, P0171, P1171, P0172, P0201, P0202,
P0203, P0204, P0300, P0336, P0337, P0351,
P0352, P0402, P0404, P1404, P0405, P0406,
P0506, P0507, and P0443 are not set.
S 2 second delay after conditions are met.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illuminate
after three consecutive ignition cycle with a fail.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The vehicle will operate in Open Loop.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
1F – 550IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1336
58X CRANK POSITION TOOTH ERROR NOT LEARNED
Circuit Description
In order to detect engine misfire at higher engine speeds,
the Engine Control Module (ECM) must know of any varia-
tion between the crankshaft sensor pulses. Most varia-
tions are due to the machining of the crankshaft reluctor
wheel. However, other sources of variation are also pos-
sible. A Crankshaft Position (CKP) system variation learn-
ing procedure must be performed any time a change is
made to the crankshaft sensor to crankshaft relationship
of if the ECM is replaced or reprogrammed. The ECM
measures the variations and then calculates compensa-
tion factors needed to enable the ECM to accurately de-
tect engine misfire at all speeds and loads. A scan tool
must be used to command the ECM to learn these varia-
tions. If for any reason the ECM is unable to learn these
variations or they are out of an acceptable range, the ECM
will set Diagnostic Trouble Code (DTC) P1336. An ECM
that has not had the CKP system variation learning proce-
dure performed due to replacement or reprogramming will
also set DTC P1336.
Conditions for Setting the DTC
S Tooth error not learned if the manufacture enable
counter is set to zero.
S DTCs P0106, P0107, P0108, P0117, P0118,
P0122, P0123, P0132, P0201, P0202, P0203,
P0204, P0325 , 0327, P0336, P0337, P0341,
P0342, P0351, P0352, P0402, P1404, P0404,
P0405, P0406 and P0502 are not set.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffer.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S The MIL will turn OFF after four consecutive igni-
tion cycles in which the diagnostic runs without a
fault.
S A history DTC will clear after 40 consecutive warm
up cycles without a fault.
S Disconnecting the ECM battery feed for more than
10 seconds.
S DTC(s) can be cleared by using the scan tool.Diagnostic Aids
CAUTION : To avoid personal injury when performing
the crankshaft position system variation learning
procedure, always set the vehice parking brake and
block the drive wheels. Release the throttle immedi-
ately when the engine starts to decelerate. Once the
learn procedure is completed, engine control will be
returned to the operator, and the engine will respond
to throttle position.
DTC P1336 will only set if the ECM has not learned the
CKP system variation. The ECM only needs to learn this
variation once per life cycle of the vehicle unless the crank
sensor to crankshaft relationship is disturbed. Removing
a part is considered a disturbance. A fully warmed engine
is critical to learning the variation correctly. If a valid learn
occurs, no other learns can be completed that ignition
cycle.
If the engine cuts out before the specified learn procedure
engine speed or at normal fuel cutoff rpm, the ECM is not
in the learn procedure mode.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the fault occurred. The information is then stored on
the scan tool for later reference.
2. Engine temperature is critical to properly learn the
CKP system variation. Failure to properly warm the
engine before performing this procedure will result
in an inaccurate measurement of the CKP system
variation. The ECM learns this variation as the en-
gine is decelerating and then allows engine control
to be returned to the operator. All accessories must
be OFF when learning the CKP system angle varia-
tion. If the A/C is not disabled when the learn pro-
cedure is enabled, the ECM will disable the A/C.
3. If after the specified number attempts the ECM
cannot learn the CKP system variation, then the
variation is too large and no further attempts should
be made until the variation problem is corrected.
4. Being unable to learn the procedure indicates that
the variation is out of range.
5. After the CKP system variation has been learned,
wait above 10 seconds with ignition switch OFF to
prevent being cleared the learned value.
1F – 552IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1391
G SENSOR ROUGH ROAD RATIONALITY
Circuit Description
TThe Gravity Sensing Rough Road (G) sensor is a vertical
low g–acceleration sensor. By sensing vertical accelera-
tion caused by bumps or potholes in the road, the Engine
Control Module (ECM) can determine if the changes in
crankshaft speed are due to engine misfire or are driveline
induced. If the G sensor detects a rough road condition,
the ECM misfire detection diagnostic will be de–activated.
The G sensor at rest output should be between 2.35–2.65
volts (+1G). During a rough road condition, the voltage
output can vary between 0.5 (–1G) and 4.5 volts (+3G).
Conditions for Setting the DTC
S Engine is running.
S Vehicle speed is less than or equal to 5 km/h (3.1
mph).
S G sensor output at idle indicates below –0.39 volts
or above 2.21 volts.
OR
S Engine is running more than 10 seconds and ve-
hicle speed is between 30 mph (50 km/h) and 70
mph (112 km/h).
S G sensor signal changes less than 0.00024 volts
while driving.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.Conditions for Clearing the MIL/DTC
S A history Diagnostic Trouble Code (DTC) will clear
after 40 consecutive warm–up cycles without a
fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check for the following conditions:
S Poor connection at the ECM – Inspect the harness
connections for backed–out terminals, improper
mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connec-
tion.
S Damaged harness –– Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the G sensor display on the scan tool while moving
connectors and wiring harnesses related to the sen-
sor. A change in the display will indicate the loca-
tion of the fault.
Since the G sensor shares the ECM 5 volt reference and
ground terminals with the A/C Pressure Sensor, a dam-
aged A/C Pressure Sensor harness or sensor could cause
a G sensor DTC to set. Refer to ”Multiple ECM Information
Sensor DTCs Set” in this section. in this section.
The G sensor will give correct voltages only if it is level and
mounted securely to its bracket.
Reviewing the Failure Records vehicle mileage since the
diagnostic test last failed may help determine how often
the condition that caused the DTC to be set occurs. This
may assist in diagnosing the con
ENGINE CONTROLS 1F – 555
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1392
G SENSOR ROUGH ROAD LOW VOLTAGE
Circuit Description
The Gravity Sensing Rough Road (G) sensor is a vertical
low g–acceleration sensor. By sensing vertical accelera-
tion caused by bumps or potholes in the road, the Engine
Control Module (ECM) can determine if the changes in
crankshaft speed are due to engine misfire or are driveline
induced. If the G sensor detects a rough road condition,
the ECM misfire detection diagnostic will be de–activated.
The G sensor at rest output should be between 2.35–2.65
volts (+1G). During a rough road condition, the voltage
output can vary between 0.5 (–1G) and 4.5 volts (+3G).
Conditions for Setting the DTC
S G sensor output is less than 2%.
S Engine is running more than or equal to 10 sec-
onds.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history Diagnostic Trouble Code (DTC) will clear
after 40 consecutive warm–up cycles without a
fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check for the following conditions:S Poor connection at the ECM – Inspect the harness
connections for backed–out terminals, improper
mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connec-
tion.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the G sensor display on the scan tool while moving
connectors and wiring harnesses related to the sen-
sor. A change in the display will indicate the loca-
tion of the fault.
Since the G sensor shares the ECM 5 volt reference and
ground terminals with the A/C Pressure Sensor, a dam-
aged A/C Pressure Sensor harness or sensor could cause
a G sensor DTC to set. Refer to ”Multiple ECM Information
Sensor DTCs Set” in this section.
The G sensor will give correct voltages only if it is level and
mounted securely to its bracket.
Reviewing the Failure Records vehicle mileage since the
diagnostic test last failed may help determine how often
the condition that caused the DTC to be set occurs. This
may assist in diagnosing the condition.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
1F – 558IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1393
G SENSOR ROUGH ROAD HIGH VOLTAGE
Circuit Description
The Rough Road (G) sensor is a vertical low g–accelera-
tion sensor. By sensing vertical acceleration caused by
bumps or potholes in the road, the Engine Control Module
(ECM) can determine if the changes in crankshaft speed
are due to engine misfire or are driveline induced. If the G
sensor detects a rough road condition, the ECM misfire
detection diagnostic will be de–activated. The G sensor at
rest output should be between 2.35–2.65 volts (+1G). Dur-
ing a rough road condition, the voltage output can vary be-
tween 0.5 (–1G) and 4.5 volts (+3G).
Conditions for Setting the DTC
S G sensor output is greater than 98%.
S Engine is running more than or equal to 10 sec-
onds.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history Diagnostic Trouble Code (DTC) will clear
after 40 consecutive warm–up cycles without a
fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
Check for the following conditions:S Poor connection at the ECM – Inspect the harness
connections for backed–out terminals, improper
mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connec-
tion.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the G sensor display on the scan tool while moving
connectors and wiring harnesses related to the sen-
sor. A change in the display will indicate the loca-
tion of the fault.
Since the G sensor shares the ECM 5 volt reference and
ground terminals with the A/C Pressure Sensor, a dam-
aged A/C Pressure Sensor harness or sensor could cause
a G sensor DTC to set. Refer to”Multiple ECM Information
Sensor DTCs Set” in this section.
The G sensor will give correct voltages only if it is level and
mounted securely to its bracket.
Reviewing the Failure Records vehicle mileage since the
diagnostic test last failed may help determine how often
the condition that caused the DTC to be set occurs. This
may assist in diagnosing the condition.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
ENGINE CONTROLS 1F – 561
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P1396
ABS WSS SIGNAL VARIATION
Circuit Description
The Engine Control Module (ECM) determines linear
wheel speed excessive variation. The wheel speed varia-
tion test detects at least one missing edge from the wheel
speed sensor signal.
Conditions for Setting the DTC
S WSS variation is greater than 18km/h (11.2 mph).
S Vehicle speed is greater than 10km/h (6.2 mph).
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will not illumi-
nate.
S The ECM will store conditions which were present
when the DTC set as Failure Records data only.
This information will not be stored as Freeze Frame
data.
S A history DTC is stored.
Conditions for Clearing the MIL/DTC
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S The DTC(s) can be cleared by using the scan tool.
Diagnostic Aids
Check for the following conditions:S Poor connection at the ECM – Inspect the harness
connections for backed–out terminals, improper
mating, broken locks, improperly formed or dam-
aged terminals, and poor terminal–to–wire connec-
tion.
S Damaged harness – Inspect the wiring harness for
damage. If the harness appears to be OK, observe
the G sensor display on the scan tool while moving
connectors and wiring harnesses related to the sen-
sor. A change in the display will indicate the loca-
tion of the fault.
An open signal circuit of open PWM serial data line be-
tween the ECM and the EBCM will be the cause of this
DTC.
Test Description
The number(s) below refer to specific step(s) on the diag-
nostic table.
1. The On–Board Diagnostic (EOBD) System Check
prompts the technician to complete some basic
checks and store the freeze frame and failure re-
cords data on the scan tool if applicable. This
creates an electronic copy of the data taken when
the malfunction occurred. The information is then
stored on the scan tool for later reference.
6. The replacement ECM must be reprogrammed.
Refer to the latest Techline procedure for ECM re-
programming.