
1F – 2 ENGINE CONTROLS
DAEWOO M-150 BL2
DTC P0122 Throttle Position Sensor Low
Voltage 1F-76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0123 Throttle Position Sensor High
Voltage 1F-80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0131 Oxygen Sensor Low Voltage 1F-84. . . .
DTC P0132 Oxygen Sensor High Voltage 1F-88. . . .
DTC P0133 Oxygen Sensor No Activity 1F-90. . . . .
DTC P0137 Heated Oxygen Sensor Low
Voltage 1F-94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0138 Heated Oxygen Sensor High
Voltage 1F-98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0140 Heated Oxygen Sensor
No Activity 1F-100. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0141 Heated Oxygen Sensor
Heater Malfunction 1F-104. . . . . . . . . . . . . . . . . . . .
DTC P0171 Fuel Trim System Too Lean 1F-106. . . .
DTC P0172 Fuel Trim System Too Rich 1F-109. . . .
DTC P1230 Fuel Pump Relay Low Voltage 1F-114.
DTC P1231 Fuel Pump Relay High Voltage 1F-118.
DTC P0261 Injector 1 Low Voltage 1F-122. . . . . . . .
DTC P0262 Injector 1 High Voltage 1F-124. . . . . . . .
DTC P0264 Injector 2 Low Voltage 1F-126. . . . . . . .
DTC P0265 Injector 2 High Voltage 1F-128. . . . . . . .
DTC P0267 Injector 3 Low Voltage 1F-130. . . . . . . .
DTC P0268 Injector 3 High Voltage 1F-132. . . . . . . .
DTC P0300 Multiple Cylinder Misfire 1F-135. . . . . . .
DTC P0300 Multiple Cylinder Misfire 1F-139. . . . . . .
DTC P1320 Crankshaft Segment Period
Segment adaptation At Limit 1F-142. . . . . . . . . . . .
DTC P1321 Crankshaft Segment Period
Tooth Error 1F-144. . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0327 Knock Sensor Circuit Fault 1F-146. . . .
DTC P0335 Magnetic Crankshaft Position
Sensor Electrical Error 1F-150. . . . . . . . . . . . . . . . .
DTC P0336 58X Crankshaft Position Sensor
No Plausible Signal 1F-152. . . . . . . . . . . . . . . . . . . .
DTC P0337 58X Crankshaft Position Sensor
No Signal 1F-154. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0341 Camshaft Position Sensor
Rationality 1F-156. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0342 Camshaft Position Sensor
No Signal 1F-158. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0351 Ignition Signal Coil A Fault 1F-160. . . . .
DTC P0352 Ignition Signal Coil B Fault 1F-162. . . . .
DTC P0353 Ignition Signal Coil C Fault 1F-164. . . . .
DTC P1382 Rough Road Data
Invalid (Non ABS) 1F-166. . . . . . . . . . . . . . . . . . . . .
DTC P1382 Rough Road Data Invalid (ABS) 1F-170
DTC P1385 Rough Road Sensor Circuit Fault
(Non ABS) 1F-174. . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1385 Rough Road Sensor Circuit Fault
(ABS) 1F-178. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DTC P0400 Exhaust Gas Recirculation
Out Of Limit 1F-182. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1402 Exhaust Gas Recirculation
Blocked 1F-186. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1403 Exhaust Gas Recirculation
Valve Failure 1F-188. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0404 Exhaust Gas Recirculation
Opened 1F-192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1404 Exhaust Gas Recirculation
Closed 1F-196. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0405 EEGR Pintle Position Sensor
Low Voltage 1F-200. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0406 EEGR Pintle Position Sensor
High Voltage 1F-204. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0420 Catalyst Low Efficiency 1F-208. . . . . . . .
DTC P0444 EVAP Purge Control Circuit
No Signal 1F-210. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0445 EVAP Purge Control Fault 1F-214. . . . .
DTC P0462 Fuel Level Sensor Low Voltage 1F-218.
DTC P0463 Fuel Level Sensor High Voltage 1F-222
DTC P0480 Low Speed Cooling Fan Relay
Circuit Fauit (Without A/C) 1F-226. . . . . . . . . . . . . .
DTC P0480 Low Speed Cooling Fan Relay
Circuit Fauit (With A/C) 1F-230. . . . . . . . . . . . . . . . .
DTC P0481 High Speed Cooling Fan Relay
Circuit Fauit (Without A/C) 1F-234. . . . . . . . . . . . . .
DTC P0481 High Speed Cooling Fan Relay
Circuit Fauit (With A/C) 1F-238. . . . . . . . . . . . . . . . .
DTC P0501 Vehicle Speed No Signal
(M/T Only) 1F-242. . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1505 Idle Air Control Valve (IACV)
Error 1F-246. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1535 Evaporator Temperature Sensor
High Voltage 1F-250. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1536 Evaporator Temperature Sensor
Low Voltage 1F-252. . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1537 A/C Compressor Relay High
Voltage 1F-254. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1538 A/C Compressor Relay Low
Voltage 1F-256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0562 System Voltage (Engine Side)
Too Low 1F-258. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0563 System Voltage (Engine Side)
Too High 1F-260. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0601 Engine Control Module Chechsum
Error 1F-262. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P0604 Engine Control Module Internal/
External RAM Error 1F-263. . . . . . . . . . . . . . . . . . . .
DTC P0605 Engin Control Module NMVY
Write Error 1F-264. . . . . . . . . . . . . . . . . . . . . . . . . . .
DTC P1610 Main Relay High Voltage 1F-266. . . . . .
DTC P1611 Main Relay Low Voltage 1F-268. . . . . . .

1F–8 ENGINE CONTROLS
DAEWOO M-150 BL2
tions. With the ignition ON and the engine not running,
the Engine Control Module (ECM) will read the manifold
pressure as barometric pressure and adjust the air/fuel
ratio accordingly. This compensation for altitude allows
the system to maintain driving performance while hold-
ing emissions low. The barometric function will update
periodically during steady driving or under a wide open
throttle condition. In the case of a fault in the barometric
portion of the MAP sensor, the ECM will set to the de-
fault value.
A failure in the MAP sensor circuit sets a diagnostic
trouble codes P0107, P0108 or P0106.
ENGINE CONTROL MODULE
The Engine Control Module (ECM), is the control center
of the fuel injection system. It constantly looks at the in-
formation from various sensors and controls the sys-
tems that affect the vehicle’s performance. The ECM
also performs the diagnostic functions of the system. It
can recognize operational problems, alert the driver
through the Malfunction Indicator Lamp (MIL), and store
diagnostic trouble code(s) which identify the problem
areas to aid the technician in making repairs.
There are no serviceable parts in the ECM. The calibra-
tions are stored in the ECM in the Programmable Read
Only Memory (PROM).
The ECM supplies either 5 or 12 volts to power the sen-
sors or switches. This is done through resistance in the
ECM which are so high in value that a test light will not
come on when connected to the circuit. In some cases,
even an ordinary shop voltmeter will not give an accu-
rate reading because its resistance is too low. You must
use a digital voltmeter with a 10 megohm input imped-
ance to get accurate voltage readings. The ECM con-
trols output circuits such as the fuel injectors, the Idle Air
Control (IAC) valve, the A/C clutch relay, etc., by control-
ling the ground circuit through transistors or a device
called a “quad-driver.”
FUEL INJECTOR
The Multi-port Fuel Injection (MFI) assembly is a sole-
noid-operated device controlled by the Engine Control
Module (ECM) that meters pressurized fuel to a single
engine cylinder. The ECM energizes the fuel injector or
solenoid to a normally closed ball or pintle valve. This al-
lows fuel to flow into the top of the injector, past the ball
or pintle valve, and through a recessed flow director
plate at the injector outlet.
The director plate has six machined holes that control
the fuel flow, generating a conical spray pattern of finely
atomized fuel at the injector tip. Fuel from the tip is di-
rected at the intake valve, causing it to become further
atomized and vaporized before entering the combustion
chamber. A fuel injector which is stuck partially open
would cause a loss of fuel pressure after the engine is
shut down. Also, an extended crank time would be no-
ticed on some engines. Dieseling could also occur be-cause some fuel could be delivered to the engine after
the ignition is turned off.
FUEL CUT-OFF SWITCH
The fuel cutoff switch is a safety device. In the event of a
collision or a sudden impact, it automatically cuts off the
fuel supply and activates the door lock relay. After the
switch has been activated, it must be reset in order to
restart the engine. Reset the fuel cutoff switch by press-
ing the rubber top of the switch. The switch is located
near the right side of the passenger’s seat.
KNOCK SENSOR
The knock sensor detects abnormal knocking in the en-
gine. The sensor is mounted in the engine block near the
cylinders. The sensor produces an AC output voltage
which increases with the severity of the knock. This sig-
nal is sent to the Engine Control Module (ECM). The
ECM then adjusts the ignition timing to reduce the spark
knock.
VARIABLE RELUCTANCE (VR)
SENSOR
The variable reluctance sensor is commonly refered to
as an “inductive” sensor.
The VR wheel speed sensor consists of a sensing unit
fixed to the left side front macpherson strut, for non-ABS
vehicle.
The ECM uses the rough road information to enable or
disable the misfire diagnostic. The misfire diagnostic
can be greatly affected by crankshaft speed variations
caused by driving on rough road surfaces. The VR sen-
sor generates rough road information by producing a
signal which is proportional to the movement of a small
metal bar inside the sensor.
If a fault occurs which causes the ECM to not receive
rough road information between 30 and 70 km/h (1.8
and 43.5 mph), Diagnostic Trouble Code (DTC) P1391
will set.
OCTANE NUMBER CONNECTOR
The octane number connector is a jumper harness that
signal to the engine control module (ECM) the octane
rating of the fuel.
The connector is located on the next to the ECM. There
are two different octane number connector settings
available. The vehicle is shipped from the factory with a
label attached to the jumper harness to indicate the oc-
tane rating setting of the ECM. The ECM will alter fuel
delivery and spark timing based on the octane number
setting. The following table shows which terminal to
jump on the octane number connector in order to
achieve the correct fuel octane rating. Terminal 2 is
ground on the octane number connector. The find the

1F–18 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F010
EURO ON-BOARD DIAGNOSTIC (EOBD) SYSTEM CHECK
Circuit Description
The Euro On-Board Diagnostic (EOBD) System Check
is the starting point for any driveability complaint diagno-
sis. Before using this procedure, perform a careful visu-
al/physical check of the Engine Control Module (ECM)
and the engine grounds for cleanliness and tightness.
The EOBD system check is an organized approach to
identifying a problem created by an electronic engine
control system malfunction.Diagnostic Aids
An intermittent may be caused by a poor connection,
rubbed-through wire insulation or a wire broken inside
the insulation. Check for poor connections or a dam-
aged harness. Inspect the ECM harness and connec-
tions for improper mating, broken locks, improperly
formed or damaged terminals, poor terminal-to-wire
connections, and damaged harness.

ENGINE CONTROLS 1F–21
DAEWOO M-150 BL2
MULTIPLE ECM INFORMATION SENSOR DTCS SET
Circuit Description
The Engine Control Module (ECM) monitors various
sensors to determine engine operating conditions. The
ECM controls fuel delivery, spark advance, transaxle op-
eration, and emission control device operation based on
the sensor inputs.
The ECM provides a sensor ground to all of the sensors.
The ECM applies 5 volts through a pull-up resistor and
monitors the voltage present between the sensor and
the resistor to determine the status of the Engine Cool-
ant Temperature (ECT) sensor, the Intake Air Tempera-
ture (IAT) sensor. The ECM provides the Electric
Exhaust Gas Recirculation (EEGR) Pintle Position Sen-
sor, the Throttle Position (TP) sensor, the Manifold Ab-
solute Pressure (MAP) sensor, and the Fuel Tank
Pressure Sensor with a 5 volt reference and a sensor
ground signal. The ECM monitors the separate feed-
back signals from these sensors to determine their oper-
ating status.
Diagnostic Aids
Be sure to inspect the ECM and the engine grounds for
being secure and clean.
A short to voltage in one of the sensor circuits can cause
one or more of the following DTCs to be set: P0108,
P0113, P0118, P0123, P1106.If a sensor input circuit has been shorted to voltage, en-
sure that the sensor is not damaged. A damaged sensor
will continue to indicate a high or low voltage after the
affected circuit has been repaired. If the sensor has
been damaged, replace it.
An open in the sensor ground circuit between the ECM
and the splice will cause one or more of the following
DTCs to be set: P0108, P0113, P0118, P0123, P1106.
A short to ground in the 5 volt reference circuit or an
open in the 5 volt reference circuit between the ECM
and the splice will cause one or more of the following
DTCs to be set: P0107, P0112, P0117, P0122, P1107.
Check for the following conditions:
Inspect for a poor connection at the ECM. Inspect
harness connectors for backed-out terminals, im-
proper mating, broken locks, improperly formed or
damaged terminals, and poor terminal-to-wire con-
nection.
Inspect the wiring harness for damage. If the harness
appears to be OK, observe an affected sensor’s dis-
played value on the scan tool with the ignition ON and
the engine OFF while moving connectors and wiring
harnesses related to the affected sensors. A change
in the affected sensor’s displayed value will indicate
the location of the fault.

ENGINE CONTROLS 1F–29
DAEWOO M-150 BL2
Engine Cranks But Will Not Run (Cont’d)
StepActionValue(s)YesNo
42
1. Turn the ignition OFF.
2. Connect test light between fuel injector harness
connector 2 and battery positive.
3. Crank the engine.
4. Repeat step 2 and 3 for each of the remaining
fuel injectors.
Does the test light flash for all of the fuel injectors?
–
Go to Step 43Go to Step 46
43
Measure the resistance of each fuel injectors.
Is the resistance within the value specified.
Note: the resistance will increase slightly at higher
temperature.
13.75–15.25
ΩSystem OKGo to Step 44
44
Replace any of the fuel injectors with a resistance
out of specification.
Is the repair complete?
–
Go to Step 2
–
45
1. Inspect the fuse EF19 in engine fuse block.
2. Check for an open between the circuit from
terminal 2 of the three fuel injectors and terminal
87 of main relay.
Is the problem found?
–
Go to Step 48
Go to “Main
Relay Circuit
Check”
46
Measure the resistance between following terminals.
Terminal 1 of injector 1 connector and terminal 30
of ECM connector.
Terminal 1 of injector 2 connector and terminal 58
of ECM connector.
Terminal 1 of injector 3 connector and terminal 89
of ECM connector.
Does the resistance within the specified value?
0 ΩGo to Step 49Go to Step 47
47Repair the open fuel injector harness wire(s).
Is the repair complete?–Go to Step 2–
48Replace the fuse or repair the wiring as needed.
Is the repair complete?–Go to Step 2–
49Replace the ECM.
Is the repair complete?–Go to Step 2–

1F–30 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F030
NO MALFUNCTION INDICATOR LAMP
Circuit Description
When the ignition is turned ON, the Malfunction Indica-
tor Lamp (MIL) will be turned ON and remain ON until
the engine is running, if no Diagnostic Trouble Codes
(DTCs) are stored. Battery voltage is supplied through
the ignition switch directly to the MIL telltale. The Engine
Control Module (ECM) controls the MIL by providing a
ground path through the MIL control circuit to turn ON
the MIL.
Diagnostic Aids
An open ignition F16 fuse will cause the entire cluster to
be inoperative.Check the battery and ignition feed circuits for poor con-
nections if the MIL is intermittent.
Any circuitry, that is suspected as causing an intermit-
tent complaint, should be thoroughly checked for
backed-out terminals, improper mating, broken locks,
improperly formed or damaged terminals, poor terminal-
to-wiring connections or physical damage to the wiring
harness.

1F–34 ENGINE CONTROLS
DAEWOO M-150 BL2
FUEL SYSTEM DIAGNOSIS
Circuit Description
The fuel pump is an in-tank type mounted to a fuel send-
er assembly. The fuel pump will remain on as long as the
engine is cranking or running and the Engine Control
Module (ECM) is receiving reference pulses from the
crankshaft position (CKP) sensor. If there are no refer-
ence pulses, the ECM will turn off the fuel pump two sec-
onds after the ignition switch is turned ON or two
seconds after the engine stops running. The fuel pump
delivers fuel to the fuel rail and the fuel injectors, where
the fuel system pressure is controlled from 380 kPa (55
psi) by the fuel pressure regulator. The excess fuel is re-
turned to the fuel tank.
Caution: The fuel system is under pressure. To
avoid fuel spillage and the risk of personal injury orfire, it is necessary to relieve the fuel system pres-
sure before disconnecting the fuel lines.
Caution: Do not pinch or restrict nylon fuel lines.
Damage to the lines could cause a fuel leak, result-
ing in possible fire or personal injury.
Fuel Pressure Relief Procedure
1. Remove the fuel cap.
2. Remove the fuel pump fuse EF23 from the engine
fuse block.
3. Start the engine and allow the engine to stall.
4. Crank the engine for an additional 10 seconds.
Fuel System Pressure Test
Step Action Value(s) Yes No
1
1. Relieve the fuel system pressure.
2. Install a fuel pressure gauge.
3. Turn the ignition ON.
Is the fuel pressure around the values specified and
holding steady?
380 kPa
(55 psi)
System OK
Go to Step 2
2
1. Relieve the fuel system pressure.
2. Install a fuel pressure gauge.
3. Turn the ignition ON.
Is the fuel pressure around the values specified but
not holding steady?
380 kPa
(55 psi)
Go to Step 13
Go to Step 3
3
Inspect the fuel lines for a leak.
Is the problem found?
–
Go to Step 4
Go to Step 5
4
1. Replace the fuel line(s) as needed.
2. Install a fuel pressure gauge.
3. Turn the ignition ON.
Is the fuel pressure around the values specified and
holding steady?
380 kPa
(55 psi)
System OK
–
5
1. Remove the fuel pump assembly.
2. With the fuel pump under pressure, inspect the
fuel pump coupling hoses for leaking.
Is the problem found?
–
Go to Step 6
Go to Step 7
6
1. Tighten or replace the fuel pump coupling hoses
as needed.
2. Install a fuel pressure gauge.
3. Turn the ignition ON.
Is the fuel pressure around the values specified and
holding steady?
380 kPa
(55 psi)
System OK
Go to Step 8
7
With the fuel system under pressure, inspect the fuel
return outlet for leaking.
Is the problem found?
–
Go to Step 8
Go to Step 9

1F–38 ENGINE CONTROLS
DAEWOO M-150 BL2
MAA1F050
MAIN RELAY CIRCUIT CHECK
Circuit Description
When the ignition is turned On or to the START position,
the main relay is energized. The main relay then supply
voltage to the engine fuse block fuse EF25 and EF26.
The Electronic Ignition (EI) system ignition coil is sup-
plied voltage through the engine fuse block fuse EF26.
The fuel injectors are supplied voltage through the en-
gine fuse block fuse EF25.Diagnostic Aids
An intermittent problem may be caused by a poor
connection, rubbed through wire insulation, or a bro-
ken wire inside the insulation.
A fault main relay will cause a no start condition.
There will be no voltage supplied to the EI system
ignition coil, or the fuel injectors. Without voltage sup-
plied to these components, they will not operate.