economy, and/or trip odometer data has been reset.
The CMTC uses internal programming, hard wired
inputs from the U.S./Metric and Reset switches, and
electronic messages received from the Body Control
Module (BCM) to determine the proper reset mes-
sages to send to the EMIC.
²Door Ajar Warning- The EMIC chime tone
generator will generate a single ªbong-likeº chime
tone when the ignition switch is in the On position,
and electronic messages are received over the PCI
data bus from the Body Control Module (BCM) indi-
cating that the status of any door ajar input has
changed from closed to not closed, and from the PCM
indicating that the vehicle is moving. The BCM uses
internal programming, and hard wired inputs from
the door ajar switches and the ignition switch to
determine the proper door ajar switch messages to
send to the EMIC. The PCM uses internal program-
ming and a hard wired vehicle speed pulse input
received from the BCM to determine the proper vehi-
cle distance messages to send to the EMIC.
²Electrical System Voltage Low or High
Warning- Each time the ignition switch is turned to
the On position, the EMIC chime tone generator will
generate a single ªbong-likeº chime tone the first
time an electronic message is received over the PCI
data bus from the PCM requesting ªChargingº indi-
cator illumination. This warning would indicate that
the monitored electrical system voltage is either too
low or too high. This warning will only occur once
during an ignition cycle. The PCM uses internal pro-
gramming and hard wired inputs from the electrical
and charging systems to determine the proper
ªChargingº indicator messages to send to the EMIC.
²Engine Coolant Temperature High Warning
- Each time the ignition switch is turned to the On
position, the EMIC chime tone generator will gener-
ate ªbong-likeº chime tones the first time an elec-
tronic message is received over the PCI data bus
from the PCM indicating that the engine coolant
temperature is too high. This chime will sound for
five consecutive single tones, unless an electronic
message is received from the PCM indicating that
the engine coolant temperature is not too high, or
unless the ignition switch is turned to the Off posi-
tion before the five single tones have completed. The
PCM uses internal programming and a hard wired
input from the engine coolant temperature sensor to
determine the proper engine coolant temperature
messages to send to the EMIC.
²Engine Oil Pressure Low Warning- Each
time the ignition switch is turned to the On position,
the EMIC chime tone generator will generate a sin-
gle ªbong-likeº chime tone the first time three
sequential sets of electronic messages are received
over the PCI data bus from the PCM indicating thatthe engine oil pressure is too low with the engine
running. The PCM uses internal programming and
hard wired inputs from the oil pressure sensor and
the crankshaft position sensor to determine the
proper oil pressure and engine speed messages to
send to the EMIC.
²Fasten Seat Belt Warning- Each time the
ignition switch is turned to the On position, the
EMIC chime tone generator will generate repetitive
ªbong-likeº chime tones at a slow rate the first time
an electronic message is received over the PCI data
bus from the ACM requesting ªSeatbeltº indicator
illumination. The ACM uses internal programming
and hard wired inputs from the driver side front seat
belt switch and the ignition switch to determine that
the driver side front seat belt is not fastened with
the ignition switch in the On position. These chimes
will continue to sound for a duration of about six sec-
onds each time the ignition switch is turned to the
On position, or until the driver side front seat belt is
fastened, whichever occurs first. This audible warn-
ing occurs independent of the visual warning pro-
vided by the EMIC ªSeatbeltº indicator.
²Gate Ajar Warning- The EMIC chime tone
generator will generate a single ªbong-likeº chime
tone when the ignition switch is in the On position,
and electronic messages are received over the PCI
data bus from the BCM indicating that the status of
the tailgate ajar input has changed from closed to
not closed, and from the PCM indicating that the
vehicle is moving. The BCM uses internal program-
ming, and hard wired inputs from the tailgate ajar
switch and the ignition switch to determine the
proper tailgate ajar switch messages to send to the
EMIC. The PCM uses internal programming and a
hard wired vehicle speed pulse input received from
the BCM to determine the proper vehicle distance
messages to send to the EMIC.
²Glass Ajar Warning- The EMIC chime tone
generator will generate a single ªbong-likeº chime
tone when the ignition switch is in the On position,
and electronic messages are received over the PCI
data bus from the BCM indicating that the status of
the rear flip-up glass ajar input has changed from
closed to not closed, and from the PCM indicating
that the vehicle is moving. The BCM uses internal
programming, and hard wired inputs from the flip-up
glass ajar switch and the ignition switch to deter-
mine the proper flip-up glass ajar switch messages to
send to the EMIC. The PCM uses internal program-
ming and a hard wired vehicle speed pulse input
received from the BCM to determine the proper vehi-
cle distance messages to send to the EMIC.
²Head/Park/Fog Lights-On Warning- The
EMIC chime tone generator will generate repetitive
ªbong-likeº chime tones at a fast rate when the igni-
KJCHIME/BUZZER 8B - 3
CHIME WARNING SYSTEM (Continued)
tion switch is in any position except On, and elec-
tronic messages are received over the PCI data bus
from the BCM indicating that the exterior lights are
On with the ignition switch in any position except
On, and the status of the driver side front door is not
closed. The BCM uses internal programming and
hard wired inputs from the left (lighting) control
stalk of the multi-function switch, the ignition
switch, and the driver side front door ajar switch to
determine the proper messages to send to the EMIC.
These chimes will continue to sound until the exte-
rior lighting is turned Off, until the ignition switch is
turned to the On position, or until the status of the
driver side front door ajar input changes from not
closed to closed, whichever occurs first.
²Key-In-Ignition Warning- The EMIC chime
tone generator will generate repetitive ªbong-likeº
chime tones at a fast rate when the ignition switch is
in any position except On, and electronic messages
are received over the PCI data bus from the BCM
indicating that the key is in the ignition lock cylinder
with the ignition switch in any position except On,
and the driver side front door is not closed. The BCM
internal programming and hard wired inputs from
the key-in ignition circuitry of the ignition switch,
the ignition switch, and the driver side front door
ajar switch to determine the proper messages to send
to the EMIC. These chimes will continue to sound
until the key is removed from the ignition lock cylin-
der, until the ignition switch is turned to the On
position, or until the status of the driver side front
door ajar input changes from not closed to closed,
whichever occurs first.
²Low Coolant Warning- On vehicles equipped
with a diesel engine, the EMIC chime tone generator
will generate a single ªbong-likeº chime tone when
the ignition switch is first turned to the On position
and a hard wired input from the engine coolant level
sensor to the EMIC indicates that the coolant level is
low for more than about one-quarter second. Any
time after the ignition switch is first turned to the
On position, the EMIC uses internal programming to
check the status of the engine coolant level sensor
inputs about once every second, then adjusts an
internal counter up or down based upon the status of
this input. When the counter accumulates thirty
inputs indicating that the coolant level is low, a sin-
gle chime tone is sounded. This strategy is intended
to reduce the effect that coolant sloshing within the
coolant reservoir can have on reliable chime warning
operation. This warning will only occur once during
an ignition cycle.
²Low Fuel Warning- Each time the ignition
switch is turned to the On position, the EMIC chime
tone generator will generate a single ªbong-likeº
chime tone the first time an electronic message isreceived over the PCI data bus from the PCM
requesting ªLow Fuelº indicator illumination. The
chime will only occur a second time during the same
ignition cycle if another electronic message has been
received from the PCM indicating that there is an
increase in the fuel level equal to about 3 liters (0.8
gallon), then a subsequent electronic message from
the PCM requests ªLow Fuelº indicator illumination.
This strategy combined with filtering performed by
the internal programming of the PCM on the fuel
tank sending unit input is intended to reduce the
possibility of fuel sloshing within the fuel tank caus-
ing multiple low fuel warning chimes during a given
ignition cycle. The EMIC will also respond with the
low fuel warning chime when electronic fuel level
messages are received from the PCM indicating that
the hard wired input to the PCM from the fuel tank
sending unit is an open circuit (greater than full), or
a short circuit (less than empty).
²Low Washer Fluid Warning- The EMIC
chime tone generator will generate a single ªbong-
likeº chime tone when the ignition switch is turned
to the On position and a hard wired input from the
washer fluid level switch to the EMIC indicates the
washer fluid is low for more than about one-quarter
second. Any time after the ignition switch is first
turned to the On position, the EMIC uses internal
programming to check the status of the washer fluid
level switch inputs about once every second, then
adjusts an internal counter up or down based upon
the status of this input. When the counter accumu-
lates thirty inputs indicating that the washer fluid
level is low, a single chime tone is sounded. This
strategy is intended to reduce the effect that fluid
sloshing within the washer reservoir can have on
reliable chime warning operation. This warning will
only occur once during an ignition cycle.
²Overspeed Warning- The EMIC chime tone
generator will generate repetitive ªbong-likeº chime
tones at a slow rate when the ignition switch is in
the On position, and an electronic message received
over the PCI data bus from the PCM indicates that
the vehicle speed is over a programmed speed value.
The PCM uses internal programming and distance
pulse information received over a hard wired vehicle
speed pulse input from the BCM to determine the
proper vehicle speed messages to send to the EMIC.
The BCM uses an internally programmed electronic
pinion factor and a hard wired input from the rear
wheel speed sensor to calculate the proper distance
pulse information to send to the PCM. The electronic
pinion factor represents the proper tire size and axle
ratio information for the vehicle. These chimes will
continue to sound until the vehicle speed messages
are below the programmed speed value, or until the
ignition switch is turned to the Off position, which-
8B - 4 CHIME/BUZZERKJ
CHIME WARNING SYSTEM (Continued)
There are two different versions of the BCM: base
and premium. The base BCM is a subset of the com-
ponents in the premium version. Basically, the base
version BCM does not support the following features:
Compass Mini-Trip Computer (CMTC), fog lamps
(front and/or rear), Remote Keyless Entry (RKE),
remote radio switches, or Vehicle Theft Security Sys-
tem (VTSS). Both versions of the BCM utilize inte-
grated circuitry and information carried on the
Programmable Communications Interface (PCI) databus network along with many hard wired inputs to
monitor many sensor and switch inputs throughout
the vehicle. In response to those inputs, the internal
circuitry and programming of the BCM allow it to
control and integrate many electronic functions and
features of the vehicle through both hard wired out-
puts and the transmission of electronic message out-
puts to other electronic modules in the vehicle over
the PCI data bus. The electronic functions and fea-
tures that the BCM supports or controls include the
following:
²A/C Select Switch Status- The BCM monitors
an input from, and transmits the status of the A/C
switch on the heater-A/C control.
²Ambient Temperature Data- The premium
BCM monitors and transmits the ambient tempera-
ture sensor input data.
²Cargo Lamp Disable- The BCM monitors an
input from the cargo lamp switch to provide an inte-
rior lighting disable feature.
²Chimes- The chime tone generator is located
on the ElectroMechanical Instrument Cluster (EMIC)
circuit board, but the EMIC goes to sleep with the
ignition switch in the Off position. The BCM provides
a wake-up output to the EMIC based upon inputs
from the key-in ignition switch or the exterior light-
ing switch, then sends electronic chime request mes-
sages to the EMIC for the headlamps-on warning
and key-in ignition warning.
²Door Lock Inhibit- The BCM monitors the
key-in ignition switch and the driver side front door
ajar switch to provide a door lock inhibit feature.
²Exterior Lamp Load Shedding- The BCM
provides a battery saver feature which will automat-
ically turn off exterior lamps that remain on after a
timed interval.
²Exterior Lamp Status- The BCM monitors
the status of the park lamp, low beam, high beam or
Daytime Running Lamp (DRL - Canada only), front
fog lamp (optional), and rear fog lamp (in required
markets only) relays.
²Exterior Lighting Control- The BCM pro-
vides exterior lamp control for standard head and
park lamps, as well as Daytime Running Lamps
(DRL - Canada only), front fog lamps (optional), and
rear fog lamps (in required markets only). This
includes support for features including optical horn
(also known as flash-to-pass) and headlamp time
delay.
²Flip-Up Glass Control- The BCM monitors
the tailgate cylinder lock switch, the tailgate handle
switch, the Remote Keyless Entry (RKE) module
inputs and the rear wiper switch to provide control
for the rear flip-up glass actuator.
Fig. 1 Body Control Module Location
1 - DRIVER DOOR
2 - INSTRUMENT PANEL END BRACKET
3 - JUNCTION BLOCK
4 - BODY CONTROL MODULE
Fig. 2 Body Control Module
1 - BODY CONTROL MODULE (FRONT VIEW)
2 - REMOTE KEYLESS ENTRY MODULE RECEPTACLE
3 - BCM-RKE CONNECTOR
4 - BODY CONTROL MODULE (BACK VIEW)
5 - JB-BCM CONNECTOR
6 - CONNECTOR RECEPTACLE (2)
KJELECTRONIC CONTROL MODULES 8E - 3
BODY CONTROL MODULE (Continued)
gauge readings during normal operation that are con-
sistent with customer expectations. However, when
abnormal conditions exist such as high coolant tem-
perature, the algorithm can drive the gauge pointer
to an extreme position and the microprocessor can
sound a chime through the on-board chime tone gen-
erator to provide distinct visual and audible indica-
tions of a problem to the vehicle operator. The
instrument cluster circuitry may also perform chime
service for other electronic modules in the vehicle
based upon electronic chime tone request messages
received over the PCI data bus to provide the vehicle
operator with an audible alert to supplement a visual
indication. One such alert is a door ajar warning
chime, which the EMIC provides by monitoring PCI
bus messages from the Body Control Module (BCM).
The EMIC circuitry operates on battery current
received through a fused B(+) fuse in the Junction
Block (JB) on a non-switched fused B(+) circuit, and
on battery current received through a fused ignition
switch output (run-start) fuse in the JB on a fused
ignition switch output (run-start) circuit. This
arrangement allows the EMIC to provide some fea-
tures regardless of the ignition switch position, while
other features will operate only with the ignition
switch in the On or Start positions. The EMIC
receives a ground input from the BCM as a wake-up
signal in order to provide the ignition-off features.
The EMIC circuitry is grounded through a ground
circuit and take out of the instrument panel wire
harness with an eyelet terminal connector that is
secured by a nut to a ground stud located on the left
instrument panel end bracket.
The EMIC also has a self-diagnostic actuator test
capability, which will test each of the PCI bus mes-
sage-controlled functions of the cluster by lighting
the appropriate indicators (except the airbag indica-
tor), sweeping the gauge needles to several calibra-
tion points across the gauge faces, and stepping the
odometer display sequentially from all ones through
all nines. (Refer to 8 - ELECTRICAL/INSTRUMENT
CLUSTER - DIAGNOSIS AND TESTING). See the
owner's manual in the vehicle glove box for more
information on the features, use and operation of the
EMIC.
GAUGES All gauges receive battery current
through the EMIC circuitry when the ignition switch
is in the On or Start positions. With the ignition
switch in the Off position battery current is not sup-
plied to any gauges, and the EMIC circuitry is pro-
grammed to move all of the gauge needles back to
the low end of their respective scales. Therefore, the
gauges do not accurately indicate any vehicle condi-
tion unless the ignition switch is in the On or Start
positions. All of the EMIC gauges, except the odome-
ter, are air core magnetic units. Two fixed electro-magnetic coils are located within each gauge. These
coils are wrapped at right angles to each other
around a movable permanent magnet. The movable
magnet is suspended within the coils on one end of a
pivot shaft, while the gauge needle is attached to the
other end of the shaft. One of the coils has a fixed
current flowing through it to maintain a constant
magnetic field strength. Current flow through the
second coil changes, which causes changes in its
magnetic field strength. The current flowing through
the second coil is changed by the EMIC circuitry in
response to messages received over the PCI data bus.
The gauge needle moves as the movable permanent
magnet aligns itself to the changing magnetic fields
created around it by the electromagnets.
The gauges are diagnosed using the EMIC self-di-
agnostic actuator test. (Refer to 8 - ELECTRICAL/
INSTRUMENT CLUSTER - DIAGNOSIS AND
TESTING). Proper testing of the PCI data bus and
the electronic data bus message inputs to the EMIC
that control each gauge require the use of a DRBIIIt
scan tool. Refer to the appropriate diagnostic infor-
mation. Specific operation details for each gauge may
be found elsewhere in this service information.
VACUUM-FLUORESCENT DISPLAY The Vacu-
um-Fluorescent Display (VFD) module is soldered to
the EMIC circuit board. The display is active when
the driver door is opened with the ignition switch in
the Off or Accessory positions (Rental Car mode), and
with the ignition switch in the On or Start positions.
The VFD is inactive when the ignition switch is in
the Off or Accessory positions and the driver door is
closed. The illumination intensity of the VFD is con-
trolled by the EMIC circuitry based upon electronic
dimming level messages received from the BCM over
the PCI data bus, and is synchronized with the illu-
mination intensity of other VFDs in the vehicle. The
BCM provides dimming level messages based upon
internal programming and inputs it receives from the
control knob and control ring on the left (lighting)
control stalk of the multi-function switch on the
steering column.
The VFD has several display capabilities including
odometer, trip odometer, and warning messages
whenever the appropriate conditions exist. The VFD
warning messages include:
²ªdoorº- indicating a door is ajar.
²ªgateº- indicating the tailgate is ajar.
²ªglassº- indicating the tailgate glass is ajar.
²ªlowashº- indicating that the washer fluid
level is low.
²ªno busº- indicating there is no PCI data bus
communication detected.
An odometer/trip odometer switch on the EMIC cir-
cuit board is used to control the display modes. This
switch is actuated manually by depressing the odom-
KJINSTRUMENT CLUSTER 8J - 5
INSTRUMENT CLUSTER (Continued)
Press and hold the transmitter UNLOCK button
for four to ten seconds. While pressing the UNLOCK
button in, press the LOCK button. Release both but-
tons.
This will toggle between Driver door first and
Unlock all doors function.
STANDARD PROCEDURE - RKE TRANSMITTER
PROGRAMING
New Remote Keyless Entry (RKE) transmitters can
be programed using the DRBIIItscan tool and the
proper Diagnostic Procedures manual. The DRBIIIt
scan tool can provide confirmation that the PCI data
bus is functional, and that all of the electronic mod-
ules are sending and receiving the proper messages
on the PCI data bus.
The following procedure can be used as long as one
functioning transmitter is available:
(1) Using the original transmitter, press the
UNLOCK button for 4 to 10 seconds.
(2) Without releasing the UNLOCK button, press
the PANIC button (within the 4 to 10 second inter-
val).
(3) Release both buttons.
(4) Press LOCK and UNLOCK simultaneously on
the original transmitter.
(5) Release both buttons.
(6) Press any button on the ORIGINAL transmit-
ter. A chime tone from the instrument cluster will
confirm the programming of the ORIGINAL trans-
mitter.
(7) On NEW transmitter, press LOCK and
UNLOCK simultaneously.
(8) Release both buttons.
(9) Press any button on the NEW transmitter. A
chime tone from the instrument cluster will confirm
the programming of the NEW transmitter.
(10) Up to four transmitters can be programed for
one vehicle.
SPECIFICATIONS - REMOTE KEYLESS ENTRY
TRANSMITTER
RANGE
Normal operation range is up to a distance of 3 to
7 meters (10 to 23 ft.) of the vehicle. Range may be
better or worse depending on the environment
around the vehicle.
TAILGATE CYLINDER LOCK
SWITCH
DESCRIPTION
The tailgate cylinder lock switch is integral to the
key lock cylinder inside the tailgate. The tailgate cyl-
inder lock switch is a normally-open momentary
switch that is hard wired directly to the Body Con-
trol Module (BCM), and closes a path to ground
through an internal resistor when the lock cylinder is
rotated to the unlock or lock position.
The tailgate cylinder lock switch cannot be
adjusted or repaired.
OPERATION
The tailgate cylinder lock switch is actuated when
the key is inserted in the lock cylinder and turned to
the unlock or lock position. The tailgate cylinder lock
switch closes a path to ground through an internal
resistor for the Body Control Module (BCM) when
the tailgate key lock cylinder is in the lock or unlock
position, and opens the ground path when the lock
cylinder is in the neutral position. The BCM reads
the switch status, then sends the proper switch sta-
tus messages to other electronic modules over the
Programmable Communications Interface (PCI) data
bus network. The tailgate cylinder lock switch unlock
status message is used by the BCM as an input for
Vehicle Theft Security System (VTSS) operation and
to tell the BCM to lock or unlock the tailgate. There
is no mechanical linkage between the tailgate key
cylinder and the latches.
DIAGNOSIS AND TESTING - TAILGATE
CYLINDER LOCK SWITCH
(1) Disconnect and isolate the battery negative
cable.
(2) Remove tailgate trim panel (Refer to 23 -
BODY/DECKLID/HATCH/LIFTGATE/TAILGATE/
TRIM PANEL - REMOVAL).
(3) Disconnect tailgate cylinder lock switch har-
ness connector.
(4) Using a ohmmeter, test for resistances as
shown in the Tailgate Cylinder Lock Switch Table.
KJPOWER LOCKS 8N - 9
REMOTE KEYLESS ENTRY TRANSMITTER (Continued)
SECURED ACCESS METHOD
The Secured Access method applies to all vehicles.
This method requires the use of a DRBIIItscan tool.
This method will also require that you have access to
the unique four-digit PIN code that was assigned to
the original SKIM. The PIN codemustbe used to
enter the Secured Access Mode in the SKIM. This
PIN number may be obtained from the vehicle owner,
from the original vehicle invoice, or from the
DaimlerChrysler Customer Center. Refer to the
appropriate diagnostic information for the proper
Secured Access method programming procedures.
CUSTOMER LEARN METHOD
The Customer Learn feature is only available on
domestic vehicles, or those vehicles which have a
U.S. country code designator. This programming
method also requires access to at least two valid Sen-
try Keys. If two valid Sentry Keys are not available,
or if the vehicle does not have a U.S. country code
designator, the Secured Access Methodmustbe used
to program new or additional valid keys to the SKIM.
The Customer Learn programming method proce-
dures are as follows:
(1) Obtain the blank Sentry Key(s) that are to be
programmed as valid keys for the vehicle. Cut the
blank key(s) to match the ignition switch lock cylin-
der mechanical key codes.
(2) Insert one of the two valid Sentry Keys into the
ignition switch and turn the ignition switch to the
On position.
(3) After the ignition switch has been in the On
position for longer than three seconds, but no more
than fifteen seconds, cycle the ignition switch back to
the Off position. Replace the first valid Sentry Key in
the ignition switch lock cylinder with the second
valid Sentry Key and turn the ignition switch back to
the On position. The second valid Sentry Key must
be inserted in the lock cylinder within fifteen seconds
of removing the first valid key.
(4) About ten seconds after the completion of Step
3, the SKIS indicator in the instrument cluster will
start to flash and a single audible chime tone will
sound to indicate that the system has entered the
Customer Learn programming mode.
(5) Within sixty seconds of entering the Customer
Learn programming mode, turn the ignition switch to
the Off position, replace the valid Sentry Key with a
blank Sentry Key transponder, and turn the ignition
switch back to the On position.
(6)
About ten seconds after the completion of Step 5,
a single audible chime tone will sound and the SKIS
indicator will stop flashing, stay on solid for three sec-
onds, then turn off to indicate that the blank Sentry
Key has been successfully programmed. The SKIS will
immediately exit the Customer Learn programmingmode and the vehicle may now be started using the
newly programmed valid Sentry Key.
Each of these steps must be repeated and com-
pleted in their entirety for each additional Sentry
Key that is to be programmed. If the above steps are
not completed in the given sequence, or within the
allotted time, the SKIS will exit the Customer Learn
programming mode and the programming will be
unsuccessful. The SKIS will also automatically exit
the Customer Learn programming mode if it sees a
non-blank Sentry Key transponder when it should
see a blank, if it has already programmed eight (8)
valid Sentry Keys, or if the ignition switch is turned
to the Off position for more than about fifty seconds.
NOTE: If an attempt is made to start the vehicle
while in the Customer Learn mode (SKIS indicator
flashing), the SKIS will respond as though the vehi-
cle were being started with an invalid key. In other
words, the engine will stall after about two seconds
of operation. No faults will be set.
NOTE: Once a Sentry Key has been programmed as
a valid key to a vehicle, it cannot be programmed
as a valid key for use on any other vehicle.
DOOR CYLINDER LOCK
SWITCH
DESCRIPTION
Vehicles manufactured for North American mar-
kets that are equipped with the optional Vehicle
Fig. 2 Door Cylinder Lock Switch
1 - SWITCH
2 - OUTSIDE DOOR HANDLE
3 - DOOR LOCK CYLINDER
KJVEHICLE THEFT SECURITY 8Q - 9
VEHICLE THEFT SECURITY (Continued)
KEY-IN IGNITION SWITCH
DESCRIPTION
The key-in ignition switch is integral to the igni-
tion switch, which is mounted on the left side of the
steering column, opposite the ignition lock cylinder.
It closes a path to ground for the instrument cluster
chime warning circuitry when the ignition key is
inserted in the ignition lock cylinder and the driver
door jamb switch is closed (driver door is open). The
key-in ignition switch opens the ground path when
the key is removed from the ignition lock cylinder.
The key-in ignition switch cannot be repaired and,
if faulty or damaged, the entire ignition switch must
be replaced. (Refer to 19 - STEERING/COLUMN/IG-
NITION SWITCH - REMOVAL).
DIAGNOSIS AND TESTING - KEY-IN IGNITION
SWITCH
For circuit descriptions and diagrams, Refer to the
appropriate sections on the individual components.
WARNING: ON VEHICLES EQUIPPED WITH AIR-
BAGS, REFER TO ELECTRICAL - PASSIVE
RESTRAINT SYSTEMS BEFORE ATTEMPTING ANY
STEERING WHEEL, STEERING COLUMN, OR
INSTRUMENT PANEL COMPONENT DIAGNOSIS OR
SERVICE. FAILURE TO TAKE THE PROPER PRE-
CAUTIONS COULD RESULT IN ACCIDENTAL AIR-
BAG DEPLOYMENT AND POSSIBLE PERSONAL
INJURY.
(1) Disconnect and isolate the battery negative
cable. Remove the steering column shrouds. Unplug
the key-in ignition switch wire harness connector
from the ignition switch.
(2) Check for continuity between the key-in switch
sense circuit and the left front door jamb switch
sense circuit terminals of the key-in ignition switch.
There should be continuity with the key in the igni-
tion lock cylinder, and no continuity with the key
removed from the ignition lock cylinder. If OK, go to
Step 3. If not OK, replace the faulty ignition switch
assembly.
(3) Check for continuity between the left front door
jamb switch sense circuit cavity of the key-in ignition
switch wire harness connector and a good ground.
There should be continuity with the driver door open,
and no continuity with the driver door closed. If OK,
see the diagnosis for Instrument Cluster in this
group. If not OK, repair the circuit to the driver door
jamb switch as required.
LOCK CYLINDER
REMOVAL
The ignition key must be in the key cylinder for
cylinder removal. The key cylinder must be removed
first before removing ignition switch.
(1) If equipped with an automatic transmission,
place shifter in PARK position.
(2) Remove the lower shroud cover.
(3) Remove the remote keyless entry (R.K.E.) mod-
ule.
(4) Remove the halo ring around the lock cylinder.
(5) Rotate key to ON position.
(6) A release tang is located on bottom of key cyl-
inder (Fig. 10).
(7) Position a small screwdriver or pin punch into
tang access hole on bottom of steering column (Fig.
11).
(8) Push the pin punch up while pulling key cylin-
der from steering column.
Fig. 10 LOCK CYLINDER RELEASE TANG
1 - Lock Cylinder
2 - Release Tang
19 - 10 COLUMNKJ
VALVE - INSTALLATION, FLOW
MANAGEMENT.......................14-7
VALVE - INSTALLATION, FRONT CHECK....8R-9
VALVE - INSTALLATION, FUEL TANK
CHECK.............................14-28
VALVE - INSTALLATION, PCV...........25-32
VALVE - INSTALLATION, REAR CHECK....8R-35
VALVE - INSTALLATION, VACUUM CHECK . 24-28
VALVE - OPERATION, FLOW
MANAGEMENT.......................14-6
VALVE - OPERATION, FRONT CHECK......8R-9
VALVE - OPERATION, FUEL TANK CHECK . . 14-28
VALVE - OPERATION, HIGH PRESSURE
RELIEF.............................24-42
VALVE - OPERATION, PCV..............25-31
VALVE - OPERATION, REAR CHECK......8R-34
VALVE - OPERATION, SOLENOID SWITCH . 21-161
VALVE - OPERATION, VACUUM CHECK....24-28
VALVE - REMOVAL, FLOW
MANAGEMENT.......................14-6
VALVE - REMOVAL, FRONT CHECK.......8R-9
VALVE - REMOVAL, FUEL TANK CHECK . . . 14-28
VALVE - REMOVAL, PCV...............25-32
VALVE - REMOVAL, REAR CHECK.......8R-34
VALVE - REMOVAL, VACUUM CHECK.....24-28
VALVE BODY - ASSEMBLY............21-176
VALVE BODY - CLEANING.............21-175
VALVE BODY - DESCRIPTION............21-171
VALVE BODY - DISASSEMBLY..........21-173
VALVE BODY - INSPECTION...........21-175
VALVE BODY - INSTALLATION..........21-177
VALVE BODY - OPERATION............21-171
VALVE BODY - REMOVAL.............21-172
VALVE GUIDE SEALS - DESCRIPTION . . 9-29,9-38
VALVE GUIDES - DESCRIPTION......9-19,9-30
VALVE SPRINGS - DESCRIPTION.....9-29,9-38
VALVE SPRINGS - INSTALLATION.....9-29,9-38
VALVE SPRINGS - REMOVAL........9-29,9-38
VALVE TIMING - DESCRIPTION...........9-71
VALVE TIMING - OPERATION............9-71
VALVES & SEATS - DESCRIPTION,
INTAKE/EXHAUST.....................9-26
VALVES & SEATS - INSTALLATION,
INTAKE/EXHAUST.................9-28,9-36
VALVES & SEATS - REMOVAL,
INTAKE/EXHAUST.................9-27,9-35
VANITY LAMP BULB - INSTALLATION.....8L-84
VANITY LAMP BULB - REMOVAL........8L-83
VAPOR CANISTER - DESCRIPTION.......25-33
VAPOR CANISTER - INSTALLATION......25-33
VAPOR CANISTER - OPERATION.........25-33
VAPOR CANISTER - REMOVAL..........25-33
VARIATION ADJUSTMENT - STANDARD
PROCEDURE, COMPASS...............8M-3
VEHICLE EMISSION CONTROL
INFORMATION (VECI) LABEL -
DESCRIPTION......................Intro.-8
VEHICLE IDENTIFICATION NUMBER -
DESCRIPTION......................Intro.-8
VEHICLE SAFETY CERTIFICATION LABEL
- DESCRIPTION.....................Intro.-9
VEHICLE THEFT SECURITY -
DESCRIPTION........................8Q-1
VEHICLE THEFT SECURITY - OPERATION . . 8Q-3
VEHICLE THEFT SECURITY SYSTEM -
DIAGNOSIS AND TESTING..............8Q-6
VERIFICATION TEST - STANDARD
PROCEDURE.........................8O-8
VIBRATION - DIAGNOSIS AND TESTING,
TIRE NOISE OR.......................22-8
VIBRATION DAMPER - INSTALLATION.....9-55
VIBRATION DAMPER - REMOVAL.........9-54
VIEW MIRROR - INSTALLATION, SIDE . . . 23-145
VIEW MIRROR - REMOVAL, REAR......23-161
VIEW MIRROR - REMOVAL, SIDE.......23-145
VISCOUS - CLEANING, RADIATOR - FAN . . . 7-29
VISCOUS - DESCRIPTION, RADIATOR -
FAN ................................7-27
VISCOUS - INSPECTION, RADIATOR -
FAN ................................7-29
VISCOUS - INSTALLATION, RADIATOR -
FAN
................................7-29
VISCOUS - OPERATION, RADIATOR -
FAN
................................7-27
VISCOUS - REMOVAL, RADIATOR - FAN
....7-28
VISCOUS FAN DRIVE - DIAGNOSIS AND
TESTING
............................7-28
VISOR - INSTALLATION, SUN
..........23-160VISOR - REMOVAL, SUN..............23-160
VISOR SUPPORT - INSTALLATION, SUN . . 23-160
VISOR SUPPORT - REMOVAL, SUN.....23-160
VOLT SUPPLIES - DESCRIPTION, 5......8E-13
VOLT SUPPLIES - OPERATION, 5........8E-15
VOLTAGE DROP - STANDARD
PROCEDURE, TESTING FOR A.......8W-01-10
VOLTAGE POTENTIAL - STANDARD
PROCEDURE, TESTING OF...........8W-01-9
VOLTAGE REGULATOR - DESCRIPTION....8F-31
VOLTAGE REGULATOR - OPERATION.....8F-31
VOLTAGE TEST - STANDARD
PROCEDURE, OPEN-CIRCUIT...........8F-12
VOLUME CHECK - STANDARD
PROCEDURE, OIL PUMP..............21-148
WAIT-TO-START INDICATOR -
DESCRIPTION.......................8J-35
WAIT-TO-START INDICATOR -
OPERATION.........................8J-35
WARNING - INSTALLATION............23-173
WARNING - REMOVAL...............23-173
WARNING - SAFETY PRECAUTIONS AND
WARNINGS..........................23-1
WARNING - SERVICE WARNINGS........24-39
WARNING - WINDSHIELD SAFETY
PRECAUTIONS......................23-173
WARNING, BRAKES - BASE..............5-2
WARNING, CLUTCH.....................6-2
WARNING, FRONT......................2-7
WARNING, REAR......................2-16
WARNING, RESTRAINT SYSTEM.........8O-5
WARNING SYSTEM - DESCRIPTION,
CHIME..............................8B-1
WARNING SYSTEM - DIAGNOSIS AND
TESTING, CHIME......................8B-6
WARNING SYSTEM - OPERATION,
CHIME..............................8B-2
WARNINGS, GENERAL..............8W-01-7
WARNINGS, WARNING - SAFETY
PRECAUTIONS........................23-1
WARNINGS, WARNING - SERVICE.......24-39
WASHER FLUID INDICATOR -
DESCRIPTION.......................8J-35
WASHER FLUID INDICATOR -
DIAGNOSIS AND TESTING..............8J-36
WASHER FLUID INDICATOR -
OPERATION.........................8J-36
WASHER FLUID LEVEL SWITCH -
DESCRIPTION.......................8R-17
WASHER FLUID LEVEL SWITCH -
INSTALLATION......................8R-18
WASHER FLUID LEVEL SWITCH -
OPERATION.........................8R-17
WASHER FLUID LEVEL SWITCH -
REMOVAL..........................8R-17
WASHER HOSES/TUBES - DESCRIPTION,
FRONT.............................8R-10
WASHER HOSES/TUBES - DESCRIPTION,
REAR..............................8R-35
WASHER HOSES/TUBES - OPERATION,
FRONT.............................8R-10
WASHER HOSES/TUBES - OPERATION,
REAR..............................8R-36
WASHER NOZZLE - DESCRIPTION,
FRONT.............................8R-11
WASHER NOZZLE - DESCRIPTION, REAR . 8R-36
WASHER NOZZLE - INSTALLATION,
FRONT.............................8R-11
WASHER NOZZLE - INSTALLATION,
REAR..............................8R-37
WASHER NOZZLE - OPERATION, FRONT . . 8R-11
WASHER NOZZLE - OPERATION, REAR . . . 8R-36
WASHER NOZZLE - REMOVAL, FRONT....8R-11
WASHER NOZZLE - REMOVAL, REAR....8R-36
WASHER PUMP/MOTOR - DESCRIPTION . . 8R-18
WASHER PUMP/MOTOR - INSTALLATION . 8R-20
WASHER PUMP/MOTOR - OPERATION . . . 8R-19
WASHER PUMP/MOTOR - REMOVAL.....8R-19
WASHER RESERVOIR - DESCRIPTION....8R-21
WASHER RESERVOIR - INSTALLATION . . . 8R-22
WASHER RESERVOIR - OPERATION
......8R-21
WASHER RESERVOIR - REMOVAL
.......8R-21
WASHER SYSTEM - CLEANING, FRONT
WIPER
..............................8R-7
WASHER SYSTEM - CLEANING, REAR
WIPER
.............................8R-32
WASHER SYSTEM - DIAGNOSIS AND
TESTING, FRONT WIPER
...............8R-6WASHER SYSTEM - DIAGNOSIS AND
TESTING, REAR WIPER...............8R-30
WASHER SYSTEM - INSPECTION, FRONT
WIPER..............................8R-7
WASHER SYSTEM - INSPECTION, REAR
WIPER.............................8R-33
WATER DRAINAGE AND WIND NOISE
DIAGNOSIS, DIAGNOSIS AND TESTING . . 23-176
WATER LEAKS - DIAGNOSIS AND
TESTING............................23-2
WATER PUMP - DESCRIPTION...........7-29
WATER PUMP - OPERATION.............7-30
WATERDAM - INSTALLATION....23-126,23-133
WATERDAM - REMOVAL........23-126,23-133
WATER-IN-FUEL INDICATOR -
DESCRIPTION.......................8J-37
WATER-IN-FUEL INDICATOR -
OPERATION.........................8J-37
WEAR INDICATORS - DIAGNOSIS AND
TESTING, TREAD......................22-8
WEAR PATTERNS - DIAGNOSIS AND
TESTING, TIRE.......................22-8
WEAR, STANDARD PROCEDURE -
MEASURING TIMING CHAIN.............9-71
WEATHERSTRIP - INSTALLATION, COWL . 23-185
WEATHERSTRIP - INSTALLATION, DOOR
LOWER...........................23-186
WEATHERSTRIP - INSTALLATION, DOOR
PRIMARY..........................23-185
WEATHERSTRIP - INSTALLATION,
SWING GATE BELTLINE...............23-186
WEATHERSTRIP - INSTALLATION,
SWING GATE OPENING...............23-186
WEATHERSTRIP - REMOVAL, COWL.....23-185
WEATHERSTRIP - REMOVAL, DOOR
LOWER...........................23-186
WEATHERSTRIP - REMOVAL, DOOR
PRIMARY..........................23-185
WEATHERSTRIP - REMOVAL, SWING
GATE BELTLINE.....................23-186
WEATHERSTRIP - REMOVAL, SWING
GATE OPENING.....................23-186
WEATHERSTRIP/RETAINER -
INSTALLATION, SIDE RAIL............23-186
WEATHERSTRIP/RETAINER -
INSTALLATION, WINDSHIELD A-PILLAR . . 23-187
WEATHERSTRIP/RETAINER - REMOVAL,
SIDE RAIL.........................23-186
WEATHERSTRIP/RETAINER - REMOVAL,
WINDSHIELD A-PILLAR...............23-186
WELD AND STRUCTURAL ADHESIVE
LOCATIONS - SPECIFICATIONS...........23-9
WHEEL - INSTALLATION, STEERING......19-12
WHEEL - REMOVAL, STEERING.........19-12
WHEEL ALIGNMENT - DESCRIPTION.......2-3
WHEEL ALIGNMENT - OPERATION.........2-3
WHEEL BALANCING - STANDARD
PROCEDURE.........................22-4
WHEEL CYLINDERS - ASSEMBLY.........5-29
WHEEL CYLINDERS - CLEANING.........5-28
WHEEL CYLINDERS - DISASSEMBLY......5-28
WHEEL CYLINDERS - INSPECTION........5-29
WHEEL CYLINDERS - INSTALLATION......5-29
WHEEL CYLINDERS - REMOVAL..........5-28
WHEEL MOUNTING - STANDARD
PROCEDURE........................22-10
WHEEL OPENING FLARE MOLDINGS -
INSTALLATION, FRONT...............23-145
WHEEL OPENING FLARE MOLDINGS -
INSTALLATION, REAR................23-145
WHEEL OPENING FLARE MOLDINGS -
REMOVAL, FRONT...................23-145
WHEEL OPENING FLARE MOLDINGS -
REMOVAL, REAR....................23-145
WHEEL REPLACEMENT - STANDARD
PROCEDURE........................22-10
WHEEL RUNOUT - DIAGNOSIS AND
TESTING, TIRES......................22-1
WHEEL SPEED SENSOR -
INSTALLATION, FRONT
.................5-34
WHEEL SPEED SENSOR -
INSTALLATION, REAR
..................5-35
WHEEL SPEED SENSOR - REMOVAL,
FRONT
..............................5-34
WHEEL SPEED SENSOR - REMOVAL,
REAR
...............................5-35
WHEELHOUSE SPLASH SHIELD -
INSTALLATION, FRONT
...............23-143
KJINDEX 29
Description Group-Page Description Group-Page Description Group-Page