ENGINE MANAGEMENT SYSTEM - V8
DESCRIPTION AND OPERATION 18-2-67
SET+/RES switches
The cruise control system uses two steering wheel switches labelled SET+ and RES.
The SET+ switch performs the set speed, tap up and accelerator functions. The RES switch performs the resume and
suspend functions.
With the cruise control master switch on and the vehicle in the cruise control operating speed range, one press of the
SET+ switch stores a speed value in the cruise control ECU. If the switch is pressed and held while the vehicle is
under cruise control operation, speed increases until the switch is released. At this point the cruise control ECU stores
the new speed value. If the switch is tapped (held down for less than 0.5 second) the cruise control ECU increases
vehicle speed by 1 mph (1.5 km/h).
If the RES switch is pressed while the systems is inactive (no stored values) the system will not respond. If there is
a stored value in the cruise control ECU memory and the switch is pressed, the cruise control system operates and
holds the vehicle at the stored road speed. If the cruise control system is active and the RES switch is depressed,
the cruise control ECU deactivates cruise operation but maintains the current set speed value.
Input/Output
The input from the SET+ switch to the cruise control ECU is either 12 Volts or an open circuit.
The input from the RES switch to the cruise control ECU is either 12 Volts or an open circuit.
The following diagnostic information is available through TestBook:
lThe state of operator switch SET+.
lThe state of operator switch RES.
ECU operating parameters (connector connected)
Pin No. Condition Volts Ohms
4 Ignition in position II, SET+ switch
releasedMore than 10,000
4 Ignition in position II, SET+ switch
pressed12
2 Ignition in position II, RES switch
releasedMore than 10,000
2 Ignition in position II, RES switch
pressed12
ENGINE MANAGEMENT SYSTEM - V8
18-2-68 DESCRIPTION AND OPERATION
Brake pedal switch
The cruise control ECU has two inputs from the brake pedal switch that determine the position of the brake pedal.
One input comes through the BCU and is low when the brake pedal is not pressed. The second input comes directly
from the brake pedal switch. This input is high when the brake pedal is not pressed. On vehicles with a manual
gearbox, the input from the clutch pedal switch to the cruise control ECU is connected in series with the direct signal
from the brake pedal switch.
If the cruise control ECU receives a changed signal from either source, it deactivates cruise control, removing power
to the vacuum pump and activating the vacuum control valve releasing all vacuum in the system.
The brake pedal switch also provides the signal to illuminate the brake lamps and the brake input to the SLABS ECU.
Input/Output
With the brake pedal and the clutch pedal in the rest position, the cruise control ECU receives 12 Volts.
With the brake pedal pressed, the cruise control ECU receives 0 Volts and a low voltage logic signal from the BCU.
NOTE: If the clutch pedal is pressed, 0 Volts are present at the cruise control ECU irrespective of brake pedal position.
ECU operating parameters (connector connected)
Pin No. Condition Volts Ohms
1 Ignition in position II, brake pedal
released, clutch pedal released12
1 Ignition in position II, brake pedal
pressed, clutch pedal releasedMore than 10,000
1 Ignition in position II, brake pedal
released, clutch pedal pressedMore than 10,000
ENGINE MANAGEMENT SYSTEM - V8
DESCRIPTION AND OPERATION 18-2-75
Accelerating while cruise control is active
There are three ways of increasing vehicle speed when cruise control is active:
lTemporarily increase vehicle speed (e.g. when overtaking another vehicle).
lIncrease vehicle set speed in 1 mph (1.5 km/h) increments.
lIncrease vehicle set speed.
To temporarily increase vehicle speed press the accelerator pedal until the desired speed is reached. When the
accelerator pedal is released, the vehicle coasts back to the set speed. When it reaches the set speed, cruise control
operation continues.
To increase the vehicle set speed in 1 mph (1.5 km/h) increments, tap the SET+ switch. Each tap on the switch
increases vehicle speed.
To increase the vehicle set speed, press and hold the SET+ switch until the desired set speed is reached.
The vehicle set speed will increase if the following conditions are met:
lThe vehicle is under cruise control operation.
lVehicle speed is between 28 - 125 mph (45 - 200 km/h).
lThe brake pedal is not pressed.
lThe clutch pedal is not pressed (manual gearbox only).
lThe gearbox is not in park, reverse or neutral (automatic gearbox only).
Function
The vehicle responds as follows:
lIf the driver accelerates using the accelerator pedal, vehicle speed increases overriding pneumatic actuator
position. When the driver releases the accelerator pedal, the vehicle returns to the set speed.
lIf the SET+ switch is tapped, the driver increases the stored speed and vehicle speed by 1 mph (1.5 km/h) per
tap on the switch.
lIf the driver presses and holds the SET+ switch, the vehicle speed increases until the SET+ switch is released.
This becomes the new set speed for the cruise control ECU.
Switching off cruise control
Switching off cruise control allows the driver to regain control of vehicle speed. It erases the set road speed from the
cruise control ECU memory.
To switch off cruise control, press the cruise control master switch to the off position.
Function
When the cruise control master switch is turned off, the cruise control ECU switches off power to the vacuum pump
assembly. The vacuum dump valve opens releasing the vacuum in the pneumatic actuator, returning the throttle disc
to driver control via the accelerator pedal.
FUEL DELIVERY SYSTEM - V8
DESCRIPTION AND OPERATION 19-2-5
Fuel tank breather system (all markets except NAS)
The filler tube incorporates a tank vent which allows air and fuel vapour displaced from the tank when filling to vent to
atmosphere via the filler neck. A relief valve in the vent line to the EVAP canister prevents vapour escaping through
the canister during filling. This prevents the customer overfilling the tank and maintains the correct fuel cut-off level.
The filler tube also incorporates an integral Liquid Vapour Separator (LVS). During normal driving excess fuel vapour
is passed via the vent line into the EVAP canister. To prevent the canister from being overloaded with fuel vapour,
especially in hot climates, the vapour is given the opportunity to condense in the LVS. Fuel which condenses in the
LVS flows back into the tank through the ROV's.
A breather spout within the tank controls the tank 'full' height. When fuel covers the spout it prevents fuel vapour and
air from escaping from the tank. This causes the fuel to 'back-up' in the filler tube and shuts off the filler gun. The
position of the spout ensures that when the filler gun shuts off, a vapour space of approximately 10% of the tanks total
capacity remains. This vapour space ensures that Roll Over Valves (ROV's) are always above the fuel level and the
vapour can escape and allow the tank to breathe.
The pressure relief valve fitted in the vent line to the EVAP canister prevents the customer trickle filling the tank.
Trickle filling greatly reduces the vapour space in the tank which in turn affects the tank's ability to breathe properly,
reducing engine performance and safety. When filling the tank, the pressures created are too low to open the pressure
relief valve, preventing the customer from trickle filling the tank. Vapour pressures created during driving are higher
and will open the valve allowing vapour to vent to the EVAP canister.
Four ROV's are welded onto the top surface of the tank. Each ROV is connected by a tube to the main vent line to
the EVAP canister. The ROV's allow fuel vapour to pass through them during normal vehicle operation. In the event
of the vehicle being overturned the valves shut-off, sealing the tank and preventing fuel from spilling from the vent line.
Fuel tank breather system (NAS)
The filler tube incorporates a tank vent which allows air and fuel vapour displaced from the tank when filling to vent to
atmosphere via the filler neck. A filler cap operated valve within the fuel filler neck prevents vapour escaping through
the EVAP canister during filling. This prevents the customer overfilling the tank and maintains the correct fuel cut-off
level.
The filler tube also has an 'L' shaped, stainless steel Liquid Vapour Separator (LVS). During normal driving excess
fuel vapour is passed via the vent line into the EVAP canister. To prevent the canister from being overloaded with fuel
vapour, especially in hot climates, the vapour is given the opportunity to condense in the LVS. Fuel which condenses
in the LVS flows back into the tank via the LVS vent line and through the Roll Over Valves (ROV's).
For NAS vehicles with vacuum type EVAP system leak detection capability, a small tube is located alongside the filler
tube and terminates near to the filler neck. The tube is connected to the On Board Diagnostics (OBD) pressure sensor
in the fuel pump and provides the sensor with a reading of atmospheric pressure to compare against the tank
pressure.
+ EMISSION CONTROL - V8, DESCRIPTION AND OPERATION, Emission Control Systems.
A breather spout within the tank controls the tank 'full' height. When fuel covers the spout it prevents fuel vapour and
air from escaping from the tank. This causes the fuel to 'back-up' in the filler tube and shuts off the filler gun. The
position of the spout ensures that when the filler gun shuts off, a vapour space of approximately 10% of the tanks total
capacity remains. This vapour space ensures that the ROV's are always above the fuel level and the vapour can
escape to the LVS and allow the tank to breathe.
The filler cap operated valve closes the vent line to the EVAP canister to prevent the customer trickle filling the tank.
Trickle filling greatly reduces the vapour space in the tank which in turn affects the tank's ability to breathe properly,
reducing engine performance and safety. When filling the tank, the removal of the filler cap closes the valve and the
vent line preventing the customer from trickle filling the tank. When the cap is installed the valve is opened by the cap
allowing vapour to vent to the EVAP canister.
The four ROV's are welded inside the top surface of the tank. Each ROV is connected internally in the tank by a tube
to the LVS. The ROV's allow fuel vapour to pass through them during normal vehicle operation. In the event of the
vehicle being overturned the valves shut-off, sealing the tank and preventing fuel from spilling from the vent line into
the LVS.
MANUAL GEARBOX - R380
DESCRIPTION AND OPERATION 37-7
Description
General
The R380 all synchromesh gearbox has five forward speeds and reverse and is mounted in line with the engine. The
clutch bell housing is bolted to the front of the gearbox and the transfer box is mounted at the rear.
Gearbox casings
Gearbox casings consist of a front cover, gearcase, centre plate and extension housing. All casings with the exception
of the front cover are located to each other by dowels and sealed. Gearbox filler/level and drain plugs are located in
the gearcase.
Reverse lamp switch
A reverse lamp switch is inserted into the extension housing. Selection of reverse gear will close the switch allowing
current from fuse 25 to flow through the switch to illuminate the reverse lamps. The switch also provides a feed to the
BCU and the electrochromic automatic interior mirror - if fitted; the mirror moving from the dimmed position if
applicable.
Gearchange assembly
The gearchange assembly is bolted to the top of the gearcase, the upper gear lever being attached to the lower gear
lever by means of a clamp bolt. The lower gear lever ball is housed in a Railko bush inserted in the gear change
housing, the end of the lever locating in the selector yoke which is attached to the end of the selector shaft. Bias
springs provide a positive return of the gear lever to the neutral position with selection of 1st/2nd and 5th/reverse gears
being against bias spring pressure. Spring loaded detent balls fitted in the centre plate locate in grooves in the selector
shaft to provide positive gear and neutral selection.
Lubrication
Lubrication is by an oil pump located in the extension housing and driven by the layshaft with additional lubrication
being provided by splash. The pump directs oil via a filter and internal drillings in the output shaft to lubricate the
components. On non UK and non European models, provision for oil cooling is by means of a thermostat housed in
a cover bolted to the side of the extension housing. The cover incorporates tappings for connections to an oil cooler.
On UK and European models, the thermostat and cover are replaced by an oil by-pass block.
Internal pressures produced within the gearbox are vented to atmosphere via a plastic breather pipe. The pipe is
attached to the extension housing and is routed across the top of the gearcase and secured at the open end by a clip
attached to the engine cylinder block.
Selector shaft and forks
Selector forks for 1st/2nd, 3rd/4th and 5th/reverse gears are located on a single selector shaft; the 1st/2nd and 3rd/
4th selector forks are inside the main gearcase whilst the 5th/reverse selector fork is inside the extension housing.
Each of the selector forks locates inside its corresponding synchromesh hub.
Synchromesh assemblies
Each synchromesh assembly is located on the output shaft adjacent to its corresponding gears and comprises a
synchromesh ring, hub, slippers and sleeve. The hubs and slippers are retained in the sleeves by means of spring
clips. 1st/2nd and 3rd synchromesh assemblies are fitted with double synchromesh rings whilst 4th, 5th and reverse
assemblies are fitted with single rings.
The gear train
The gear train comprises an input shaft, output shaft, layshaft and reverse idler shaft together with their appropriate
gears and synchromesh assemblies.
The gear train input shaft, output shaft and layshaft are supported by taper roller bearings with all gears on the input
and output shafts running on caged needle roller bearings. Layshaft gears are integral with the shaft with the
exception of reverse/5th gears which are splined to the shaft and retained with a nut. 1st, 2nd, 3rd and 4th gears are
shot peened to improve durability. The reverse idler shaft and gear are supported in the centre plate by a caged
needle roller bearing. End-float of the output shaft and layshaft is controlled by selective shims located in the centre
plate whilst reverse idler shaft end-float is controlled by a selective shim located behind reverse gear.
TRANSFER BOX - LT230SE
DESCRIPTION AND OPERATION 41-13
Description
General
The LT 230SE transfer box is mounted at the rear of the gearbox and transmits drive via high or low reduction ratios
to the front and rear axles via the propeller shafts. The high/low ratios are 1.211:1 and 3.32:1 respectively.
Transfer boxes fitted to this model have the prefixes 41D and 42D to the unit serial number. Prefix 41D denotes that
the unit is not fitted with interlock whilst 42D denotes that interlock is fitted.
Vehicles up to 03 model year – Whilst similar to LT230Q transfer boxes fitted to other models, the LT230SE transfer
box has certain engineering modifications incorporated which are as follows:
lUprated torque capacity
lModified front and rear output and cross shaft housings
lIntermediate gear bearing pre-load now controlled by a selective, non-collapsible spacer
lSpeedometer drive and driven gears not fitted for this application
lModified high/low sleeve
lModified front output flange and mud shield
lDifferential lock fitted to certain vehicles, but no longer driver operated
lFixed setting of differential lock warning lamp switch on vehicles fitted with differential lock
Vehicles from 03 model year – The LT230SE transfer box is as described above for vehicles up to 03 model year
with the following modifications:
The following items are introduced on vehicles from 03 model year
lRibs added to main casing to reduce operating noise
lRevised machining process for intermediate gears to reduce operating noise
lBearing retaining nut on the differential carrier has patchlock added to the threads
lInterlock solenoid moved from main casing to selector lever assembly
lIntermediate gears modified with machined internal shoulder and bearing circlips deleted
lDriver operated differential lock
lHigh/Low selector shaft fitted with spring assist
lExisting differential lock switch replaced by 2 new switches of improved design with the additional switch installed
adjacent to the existing switch location.
Construction
The transfer box comprises three main assemblies; the main casing, the front output housing and the rear output
housing. Both output housings and all cover plates are sealed to the main casing by sealant; mud and water ingress
being prevented by mud shields located on the output flanges.
Main casing
The main casing carries the mainshaft input gear, the intermediate gears and the differential, together with the high/
low range gears, selector shaft and fork. The front and rear output housings are bolted to either side of the main
casing.
Transmission neutral sensor
A transmission neutral sensor is fitted on automatic gearbox vehicles for North America and Japan. The sensor is
connected to the BCU and is normally in the open position. The sensor provides an earth path for the BCU which then
interprets the signal and activates an audible warning generated by the IDM if neutral is selected on the transfer box
when the ignition is on.
Transfer box interlock solenoid - Automatic gearbox vehicles
An interlock solenoid is fitted for North America and Japan. The solenoid is located on the top of the transfer box main
casing on vehicles up to 03 model year or on the selector lever assembly on vehicles from 03 model year. The
solenoid is connected to the transfer box relay which, in turn, is controlled by the IDM. The purpose of the solenoid is
to prevent neutral being selected on the transfer box when the ignition key is removed, thereby locking the box in
either high or low ratio.
TRANSFER BOX - LT230SE
41-14 DESCRIPTION AND OPERATION
Mainshaft input gear
The gearbox output shaft is splined into the mainshaft input gear which is supported by taper roller bearings.
Input gear bearing pre-load is achieved by the use of a selective shim located in the bearing housing.
Intermediate gears
The intermediate gear cluster is supported by the taper roller bearings located at each end of the cluster and runs on
the intermediate shaft which, in turn, is supported at the front and rear by the main casing.
A selective spacer, positioned between the gears, pre-loads the intermediate gear bearings when the intermediate
shaft nut is tightened sufficiently to achieve the correct 'torque to turn' of the intermediate gears.
On vehicles from 03 model year, the circlips used to retain the bearings in the intermediate gear are deleted. The bore
of the intermediate gear is machined with a shoulder at each end to locate the bearings.
Differential assembly
The differential assembly is supported at the front and rear by taper roller bearings, the front bearing outer track is
located in the front output housing and the rear bearing outer track is located in the main casing by the rear output
housing. Bearing pre-load is achieved by means of a selective shim located in the front output housing.
The differential rear shaft carries the low range gear, high/low selector sleeve and hub, high range gear and bush and
the differential rear bearing; these components being secured to the shaft by a special staked nut.
The differential assembly comprises front and rear half carriers with integral shafts and with sun and planet gears
mounted on cross shafts within the half carriers. Dished, non-selective thrust washers control the engagement of the
planet gears with the sun gears, whilst selective thrust washers are used to control engagement of the sun gears and
'torque to turn' of the differential. The differential carrier halves are bolted together, a retaining ring providing positive
location of the cross shafts.
The high/low selector shaft and fork are located at the side of the differential, movement of the shaft, fork and selector
sleeve being controlled by the high/low selector finger. A spring loaded detent ball fitted in the main casing, locates
in grooves in the shaft.
On vehicles from 03 model year, the selector fork is modified and fitted with a spring assister and clips to reduce the
effort required to move the selector lever.
Front output housing
The front output housing carries the front output shaft and flange, high/low cross shaft, housing and selector and on
certain vehicles, the differential lock selector shaft and fork.
The front output shaft is supported in the housing by a single bearing and is splined into the differential front sun gear.
High/low selector
The high/low cross shaft is located in a housing bolted to the top of the output housing and is connected to the high/
low selector finger which locates in a slot in the selector shaft.
High/low detect switch
A high/low detect switch is fitted in the front output housing and connects to earth when low is selected. The switch is
connected to the engine ECM, the SLABS ECU and the EAT ECU. The purpose of the switch is to enable selection
of the hill descent feature and to modify the engine fuelling and automatic gearbox gearshift maps stored within the
respective ECM's and ECU's.
Differential lock - If fitted
The differential lock selector housing is bolted to the top of the front output housing, the selector finger passes through
the housing, locating in a slot in the differential lock selector shaft. The differential lock selector shaft passes through
the selector fork which is located beneath a plate bolted to the side of the output housing. The selector fork engages
the dog clutch sleeve with the differential rear shaft when the splines of the sleeve and differential rear shaft are
aligned. A spring loaded detent ball fitted in the output housing locates in grooves in the shaft.
TRANSFER BOX - LT230SE
41-54 OVERHAUL
20.Check high/low selector fork for cracks and
wear. Check selector fork finger width.
lFinger width = 7.37 to 7.47 mm (0.290 to
0.294 in).
21. 03 Model Year onwards: Check high/low
selector fork clips for wear and damage. Check
spring for distortion, check free length of spring:
lSpring free length = 75 mm (2.95 in)
Note: High/low selector shaft, fork and spring
fitted to 03 Model Year transfer boxes may be
fitted to pre 03 Model Year boxes as an
assembly.
22.Check differential sun and planet gears for
wear, cracks and chipping of teeth.
23.Check cross shafts and recesses in both halves
of differential carrier for damage and
wear.Ensure planet gears are retained with
their respective shafts.
24.Check retaining ring for distortion.
25.Check differential splines for wear and
damage.26.Check high/low hub for cracks, chipping and
uneven wear. Check width of selector fork
groove.
lGroove width = 7.5 to 7.6 mm (0.295 to 0.30
in).
27.Check splines and teeth on high/low selector
sleeve for uneven wear, cracks, damage and
chipping.
28.Check teeth of high and low range gears for
cracks, chipping and uneven wear.
29.Check high range gear bush for wear and
damage.