Engine pre-oiling can be done using pressure oiler (if
available). Connect pressure oiler to cylinder block oil passage
such as oil pressure sending unit. Operate pressure oiler long enough
to ensure correct amount of oil has filled crankcase. Check oil level
while pre-oiling.
If pressure oiler is not available, disconnect ignition
system. Remove oil pressure sending unit and replace with oil pressure
test gauge. Using starter motor, rotate engine starter until gauge
shows normal oil pressure for several seconds. DO NOT crank engine
for more than 30 seconds to avoid starter motor damage.
Ensure oil pressure has reached the most distant point from
the oil pump. Reinstall oil pressure sending unit. Reconnect ignition
system.
INITIAL START-UP
Start the engine and operate engine at low speed while
checking for coolant, fuel and oil leaks. Stop engine. Recheck coolant
and oil level. Adjust if necessary.
CAMSHAFT
Break-in procedure is required when a new or reground
camshaft has been installed. Operate and maintain engine speed between
1500-2500 RPM for approximately 30 minutes. Procedure may vary due to
manufacturers recommendations.
PISTON RINGS
Piston rings require a break-in procedure to ensure seating
of rings to cylinder walls. Serious damage may occur to rings if
correct procedures are not followed.
Extremely high piston ring temperatures are produced obtained
during break-in process. If rings are exposed to excessively high RPM
or high cylinder pressures, ring damage can occur. Follow piston ring
manufacturer's recommended break-in procedure.
FINAL ADJUSTMENTS
Check or adjust ignition timing and dwell (if applicable).
Adjust valves (if necessary). Adjust carburetion or injection idle
speed and mixture. Retighten cylinder heads (if required). If
cylinder head or block is aluminum, retighten bolts when engine is
cold. Follow the engine manufacturer's recommended break-in procedure
and maintenance schedule for new engines.
NOTE: Some manufacturer's require that head bolts be retightened
after specified amount of operation. This must be done to
prevent head gasket failure.
CLUTCH PEDAL POSITION SWITCHES
COLD START INJECTORS
CONNECTORS
COOLANT
COOLANT RECOVERY TANKS
COOLING FAN MOTOR MODULES
COOLING FAN MOTOR RELAYS AND MODULES
COOLING FAN MOTOR RESISTORS
COOLING FAN MOTOR SENSORS AND SWITCHES
COOLING FAN MOTOR SWITCHES
COOLING FAN MOTORS
CRANKSHAFT POSITION SENSORS
DECEL VALVES
DEFLECTORS
DIP STICKS AND TUBES
DIP STICK TUBES
DISTRIBUTOR ADVANCES AND RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR BOOTS AND SHIELDS
DISTRIBUTOR CAPS
DISTRIBUTOR RETARDERS (MECHANICAL AND VACUUM)
DISTRIBUTOR ROTORS
DISTRIBUTOR SHIELDS
DISTRIBUTORS
EARLY FUEL EVAPORATION VALVES (HEAT RISER ASSEMBLIES)
EGR COOLERS
EGR EXHAUST MANIFOLD PASSAGES
EGR INTAKE AND EXHAUST MANIFOLD PASSAGES
EGR PLATES AND COOLERS
ELECTRONIC SPARK CONTROL MODULES
ELECTRONIC TRANSMISSION CONTROL DEVICES
ELECTRONIC TRANSMISSION FEEDBACK DEVICES
ENGINE COOLANT TEMPERATURE SENSORS
ENGINE COOLING SYSTEMS
ENGINE COVERS (OIL PAN, VALVE COVER, TIMING COVER)
ENGINE OIL
ENGINE OIL CANISTERS
ENGINE OIL COOLERS (EXTERNAL)
ENGINE OIL DRAIN PLUGS AND GASKETS
ENGINE OIL FILTERS AND CANISTERS
ENGINE OIL GASKETS
ENGINE OIL PRESSURE GAUGES (MECHANICAL)
EVAPORATIVE EMISSION (EVAP) CANISTER FILTERS
EVAPORATIVE EMISSION (EVAP) CANISTER PURGE DEVICES
EVAPORATIVE EMISSION (EVAP) CANISTERS
EVAPORATIVE EMISSION (EVAP) FEEDBACK DEVICES
EXHAUST GAS RECIRCULATION DEVICES
EXHAUST GAS RECIRCULATION FEEDBACK DEVICES
EXPANSION PLUGS
FAN CONTROL SENSORS
FUEL
FUEL ACCUMULATORS AND DAMPERS
FUEL AND COLD START INJECTORS
FUEL DAMPERS
FUEL DELIVERY CHECK VALVES
FUEL DISTRIBUTORS (BOSCH CIS)
FUEL FILLER NECKS AND RESTRICTORS
FUEL FILTERS
FUEL INJECTORS
FUEL LEVEL SENDERS7
FUEL PRESSURE REGULATORS
FUEL PUMPS (IN-TANK AND EXTERNAL, ELECTRICAL OR MECHANICAL)
FUEL RAILS
FUEL RESTRICTORS