Fig. 5: Adjusting Idle RPM
Courtesy of Chrysler Motors.
6) Adjust idle RPM screw to obtain idle speed of 750F50 RPM.
Once correct idle RPM is obtained, seal the welch plug cavity with RTV
sealant. Reconnect air stepper motor and TPS.
4.2L
1) Warm engine to normal operating temperature. Apply parking
brake. Place automatic transmission in Drive (Neutral on manual
transmission). Disconnect and plug vacuum hose from vacuum actuator.
Disconnect solenoid wire connector.
2) Adjust curb idle screw to obtain correct curb idle. See
CURB IDLE SPEED (RPM) table. Apply 10-15 in. Hg vacuum to vacuum
actuator. With throttle positioner fully extended, adjust screw on
throttle lever, to set vacuum actuator RPM to specification. See
VACUUM ACTUATOR & SOLENOID IDLE (RPM) table. Disconnect vacuum pump.
3) Apply battery voltage to solenoid with a jumper wire. Turn
A/C on (if equipped). Open throttle, allowing solenoid to fully
extend. Adjust solenoid adjusting screw to obtain solenoid idle RPM.
or vehicle fails emissions testing.
IDLE MIXTURE (TACHOMETER (LEAN DROP) PROCEDURE)
NOTE: On 4.2L engines, ensure idle speed and timing are set prior
to adjusting the idle mixture. If mixture adjustment time
exceeds 3 minutes, run engine at 2000 RPM in Neutral for one
minute, and resume adjustment. On 4.0L engines, idle mixture
adjustment is not possible.
4.2L
1) Remove carburetor and locate roll pins blocking idle
mixture screws. Drill through throttle body on closed end of roll pin
hole. Drive pins out with punch. Reinstall carburetor. Install
tachometer.
2) Operate engine to normal operating temperature, and adjust
curb idle speed. Place automatic transmission selector in Drive
(Neutral for manual transmissions). Turn mixture screws inward until
RPM drops. Turn screws outward until highest RPM is reached.
3) Turn mixture screws inward to obtain the correct decrease
in RPM. See LEAN DROP (RPM) table. Adjust both screws equally. When
mixture is correctly adjusted, replace roll pin to block adjustment
screws.
NOTE: If final RPM differs more than 30 RPM from specified curb
idle speed, reset curb idle, and repeat mixture adjustment.
LEAN DROP (RPM) TABLE
\
\
\
\
\
\
Application Man. Trans. Auto. Trans.
4.2L .................... 50 ........................ 50
\
\
\
\
\
\
THROTTLE POSITION SENSOR (TPS)
NOTE: Adjustment of TPS only applies to the 4.0L models. It may be
necessary to remove throttle body from intake manifold, to
access sensor wiring harness.
Checking & Adjusting - 4.0L (Automatic Transmission)
1) Locate the square TPS connector. Note connector terminal
identification stamped on the back of the connector. Turn ignition on.
2) Connect voltmeter through back of wiring harness
connector. Connect negative voltmeter lead to terminal "D" and
positive voltmeter lead to terminal "A" to check input voltage. DO NOT
disconnect TPS connector.
3) Hold throttle plate closed against idle stop and note
voltage. Input voltage should be approximately 5 volts. Disconnect
voltmeter positive lead and connect to terminal "B" to measure output
voltage.
4) With throttle plate closed, measure the output voltage.
The output voltage should be approximately 4.2 volts. If output
voltage is not within specification, loosen TPS retaining screws.
5) Partially tighten one retaining screw. Rotate TPS to
obtain correct output voltage. Tighten retaining screws once correct
voltage is obtained.
Checking & Adjusting - 4.0L (Manual Transmission)
1) Turn ignition on. Connect voltmeter through back of wiring
harness connector. Connect negative voltmeter lead to terminal
"B" and positive voltmeter lead to terminal "A". DO NOT disconnect TPS
connector.
2) Hold throttle plate in the closed throttle position
against idle stop and note input voltage reading. Input voltage should
be approximately 5.0 volts.
3) Disconnect positive lead from terminal "A" and connect to
terminal "C" to check output voltage. Output voltage should be checked
with throttle plates fully closed.
4) Output voltage should be approximately 0.8 volts. If
output voltage is not within specification, loosen TPS bottom
retaining screw and pivot sensor for a large adjustment or top
retaining screw for a fine adjustment.
5) Adjust sensor to obtain correct output voltage. Tighten
retaining screws. Remove voltmeter.
COLD (FAST) IDLE RPM
4.2L
Disconnect and plug EGR valve vacuum hose. With engine
running at normal operating temperature, place fast idle screw on
second step of fast idle cam and against shoulder of high step. Turn
screw to adjust fast idle speed.
FAST IDLE SPEED (RPM) TABLE
\
\
\
\
\
\
Application Man. Trans. Auto. Trans.
4.2L ................... 1700 ..................... 1700
\
\
\
\
\
\
AUTOMATIC CHOKE SETTING
Choke coil cover is riveted in place and no adjustment is
necessary or possible.
SERVICING
EMISSION CONTROL
See EMISSIONS section.
SPECIFICATIONS
IGNITION
Distributor
All vehicles use a Motorcraft breakerless solid state
distributor.
PICK-UP COIL RESISTANCE TABLE - OHMS @ 75
F (24C) \
\
\
\
\
\
Application Specification
All Models ....................................... 400-800
\
\
\
\
\
\
TOTAL SPARK ADVANCE TABLE @ 2000 RPM \
\
\
\
\
\
Application W/ Vac. Advance W/O Vac. Advance
4.0L ................ N/A .......................... N/A
4.2L ............... 30.5
................... 7.5-12.5
\003
WAVEFO RM S - IN JE C TO R P A TTE R N T U TO RIA L
1988 J e ep C hero ke e
GENERAL INFORMATION
Waveforms - Injector Pattern Tutorial
* PLEASE READ THIS FIRST *
NOTE: This article is intended for general information purposes
only. This information may not apply to all makes and models.
PURPOSE OF THIS ARTICLE
Learning how to interpret injector drive patterns from a Lab
Scope can be like learning ignition patterns all over again. This
article exists to ease you into becoming a skilled injector pattern
interpreter.
You will learn:
* How a DVOM and noid light fall short of a lab scope.
* The two types of injector driver circuits, voltage controlled
& current controlled.
* The two ways injector circuits can be wired, constant
ground/switched power & constant power/switched ground.
* The two different pattern types you can use to diagnose with,
voltage & current.
* All the valuable details injector patterns can reveal.
SCOPE OF THIS ARTICLE
This is NOT a manufacturer specific article. All different
types of systems are covered here, regardless of the specific
year/make/model/engine.
The reason for such broad coverage is because there are only
a few basic ways to operate a solenoid-type injector. By understanding
the fundamental principles, you will understand all the major points
of injector patterns you encounter. Of course there are minor
differences in each specific system, but that is where a waveform
library helps out.
If this is confusing, consider a secondary ignition pattern.
Even though there are many different implementations, each still has
a primary voltage turn-on, firing line, spark line, etc.
If specific waveforms are available in On Demand for the
engine and vehicle you are working on, you will find them in the
Engine Performance section under the Engine Performance category.
IS A LAB SCOPE NECESSARY?
INTRODUCTION
You probably have several tools at your disposal to diagnose
injector circuits. But you might have questioned "Is a lab scope
necessary to do a thorough job, or will a set of noid lights and a
multifunction DVOM do just as well?"
In the following text, we are going to look at what noid
lights and DVOMs do best, do not do very well, and when they can
mislead you. As you might suspect, the lab scope, with its ability to
look inside an active circuit, comes to the rescue by answering for
the deficiencies of these other tools.
OVERVIEW OF NOID LIGHT
full load. The Kent-Moore J-39021 is such a tool, though there are
others. The Kent-Moore costs around $240 at the time of this writing
and works on many different manufacturer's systems.
The second method is to use a lab scope. Remember, a lab
scope allows you to see the regular operation of a circuit in real
time. If an injector is having an short or intermittent short, the lab
scope will show it.
Checking Available Voltage At the Injector
Verifying a fuel injector has the proper voltage to operate
correctly is good diagnostic technique. Finding an open circuit on the
feed circuit like a broken wire or connector is an accurate check with
a DVOM. Unfortunately, finding an intermittent or excessive resistance
problem with a DVOM is unreliable.
Let's explore this drawback. Remember that a voltage drop due
to excessive resistance will only occur when a circuit is operating?
Since the injector circuit is only operating for a few milliseconds at
a time, a DVOM will only see a potential fault for a few milliseconds.
The remaining 90+% of the time the unloaded injector circuit will show
normal battery voltage.
Since DVOMs update their display roughly two to five times a
second, all measurements in between are averaged. Because a potential
voltage drop is visible for such a small amount of time, it gets
"averaged out", causing you to miss it.
Only a DVOM that has a "min-max" function that checks EVERY
MILLISECOND will catch this fault consistently (if used in that mode).\
The Fluke 87 among others has this capability.
A "min-max" DVOM with a lower frequency of checking (100
millisecond) can miss the fault because it will probably check when
the injector is not on. This is especially true with current
controlled driver circuits. The Fluke 88, among others fall into this
category.
Outside of using a Fluke 87 (or equivalent) in the 1 mS "min-\
max" mode, the only way to catch a voltage drop fault is with a lab
scope. You will be able to see a voltage drop as it happens.
One final note. It is important to be aware that an injector
circuit with a solenoid resistor will always show a voltage drop when
the circuit is energized. This is somewhat obvious and normal; it is a
designed-in voltage drop. What can be unexpected is what we already
covered--a voltage drop disappears when the circuit is unloaded. The
unloaded injector circuit will show normal battery voltage at the
injector. Remember this and do not get confused.
Checking Injector On-Time With Built-In Function
Several DVOMs have a feature that allows them to measure
injector on-time (mS pulse width). While they are accurate and fast to\
hookup, they have three limitations you should be aware of:
* They only work on voltage controlled injector drivers (e.g
"Saturated Switch"), NOT on current controlled injector
drivers (e.g. "Peak & Hold").
* A few unusual conditions can cause inaccurate readings.
* Varying engine speeds can result in inaccurate readings.
Regarding the first limitation, DVOMs need a well-defined
injector pulse in order to determine when the injector turns ON and
OFF. Voltage controlled drivers provide this because of their simple
switch-like operation. They completely close the circuit for the
entire duration of the pulse. This is easy for the DVOM to interpret.
The other type of driver, the current controlled type, start
off well by completely closing the circuit (until the injector pintle
opens), but then they throttle back the voltage/current for the
duration of the pulse. The DVOM understands the beginning of the pulse
but it cannot figure out the throttling action. In other words, it
cannot distinguish the throttling from an open circuit (de-energized)
condition.
Yet current controlled injectors will still yield a
millisecond on-time reading on these DVOMs. You will find it is also
always the same, regardless of the operating conditions. This is
because it is only measuring the initial completely-closed circuit on-
time, which always takes the same amount of time (to lift the injector
pintle off its seat). So even though you get a reading, it is useless.
The second limitation is that a few erratic conditions can
cause inaccurate readings. This is because of a DVOM's slow display
rate; roughly two to five times a second. As we covered earlier,
measurements in between display updates get averaged. So conditions
like skipped injector pulses or intermittent long/short injector
pulses tend to get "averaged out", which will cause you to miss
important details.
The last limitation is that varying engine speeds can result
in inaccurate readings. This is caused by the quickly shifting
injector on-time as the engine load varies, or the RPM moves from a
state of acceleration to stabilization, or similar situations. It too
is caused by the averaging of all measurements in between DVOM display
periods. You can avoid this by checking on-time when there are no RPM
or load changes.
A lab scope allows you to overcome each one of these
limitations.
Checking Injector On-Time With Dwell Or Duty
If no tool is available to directly measure injector
millisecond on-time measurement, some techs use a simple DVOM dwell or
duty cycle functions as a replacement.
While this is an approach of last resort, it does provide
benefits. We will discuss the strengths and weaknesses in a moment,
but first we will look at how a duty cycle meter and dwell meter work.
How A Duty Cycle Meter and Dwell Meter Work
All readings are obtained by comparing how long something has
been OFF to how long it has been ON in a fixed time period. A dwell
meter and duty cycle meter actually come up with the same answers
using different scales. You can convert freely between them. See
RELATIONSHIP BETWEEN DWELL & DUTY CYCLE READINGS TABLE .
The DVOM display updates roughly one time a second, although
some DVOMs can be a little faster or slower. All measurements during
this update period are tallied inside the DVOM as ON time or OFF time,
and then the total ratio is displayed as either a percentage (duty
cycle) or degrees (dwell meter).
For example, let's say a DVOM had an update rate of exactly 1
second (1000 milliseconds). Let's also say that it has been
measuring/tallying an injector circuit that had been ON a total of 250
mS out of the 1000 mS. That is a ratio of one-quarter, which would be
displayed as 25% duty cycle or 15
dwell (six-cylinder scale). Note
that most duty cycle meters can reverse the readings by selecting the
positive or negative slope to trigger on. If this reading were
reversed, a duty cycle meter would display 75%.
Strengths of Dwell/Duty Meter
The obvious strength of a dwell/duty meter is that you can
compare injector on-time against a known-good reading. This is the
only practical way to use a dwell/duty meter, but requires you to have
known-good values to compare against.
Another strength is that you can roughly convert injector mS
on-time into dwell reading with some computations.
A final strength is that because the meter averages
everything together it does not miss anything (though this is also a
severe weakness that we will look at later). If an injector has a
fault where it occasionally skips a pulse, the meter registers it and
the reading changes accordingly.
Let's go back to figuring out dwell/duty readings by using
injector on-time specification. This is not generally practical, but
we will cover it for completeness. You NEED to know three things:
* Injector mS on-time specification.
* Engine RPM when specification is valid.
* How many times the injectors fire per crankshaft revolution.
The first two are self-explanatory. The last one may require
some research into whether it is a bank-fire type that injects every
360
of crankshaft rotation, a bank-fire that injects every 720 , or
an SFI that injects every 720 . Many manufacturers do not release this
data so you may have to figure it out yourself with a frequency meter.
Here are the four complete steps to convert millisecond on-
time:
1) Determine the injector pulse width and RPM it was obtained
at. Let's say the specification is for one millisecond of on-time at a
hot idle of 600 RPM.
2) Determine injector firing method for the complete 4 stroke
cycle. Let's say this is a 360
bank-fired, meaning an injector fires
each and every crankshaft revolution.
3) Determine how many times the injector will fire at the
specified engine speed (600 RPM) in a fixed time period. We will use
100 milliseconds because it is easy to use.
Six hundred crankshaft Revolutions Per Minute (RPM) divided
by 60 seconds equals 10 revolutions per second.
Multiplying 10 times .100 yields one; the crankshaft turns
one time in 100 milliseconds. With exactly one crankshaft rotation in
100 milliseconds, we know that the injector fires exactly one time.
4) Determine the ratio of injector on-time vs. off-time in
the fixed time period, then figure duty cycle and/or dwell. The
injector fires one time for a total of one millisecond in any given
100 millisecond period.
One hundred minus one equals 99. We have a 99% duty cycle. If
we wanted to know the dwell (on 6 cylinder scale), multiple 99% times
.6; this equals 59.4
dwell.
Weaknesses of Dwell/Duty Meter
The weaknesses are significant. First, there is no one-to-one
correspondence to actual mS on-time. No manufacturer releases
dwell/duty data, and it is time-consuming to convert the mS on-time
readings. Besides, there can be a large degree of error because the
conversion forces you to assume that the injector(s) are always firing\
at the same rate for the same period of time. This can be a dangerous
assumption.
Second, all level of detail is lost in the averaging process.
This is the primary weakness. You cannot see the details you need to
make a confident diagnosis.
Here is one example. Imagine a vehicle that has a faulty
injector driver that occasionally skips an injector pulse. Every
skipped pulse means that that cylinder does not fire, thus unburned O2
gets pushed into the exhaust and passes the O2 sensor. The O2 sensor
indicates lean, so the computer fattens up the mixture to compensate
for the supposed "lean" condition.
A connected dwell/duty meter would see the fattened pulse
width but would also see the skipped pulses. It would tally both and
likely come back with a reading that indicated the "pulse width" was
within specification because the rich mixture and missing pulses
offset each other.
This situation is not a far-fetched scenario. Some early GM
3800 engines were suffering from exactly this. The point is that a
lack of detail could cause misdiagnosis.
As you might have guessed, a lab scope would not miss this.
RELATIONSHIP BETWEEN DWELL & DUTY CYCLE READINGS TABLE (1)
\
\
\
\
\
\
Dwell Meter (2) Duty Cycle Meter
1
.................................................... 1%
15 .................................................. 25%
30 .................................................. 50%
45 .................................................. 75%
60 ................................................. 100%
( 1) - These are just some examples for your understanding.
It is okay to fill in the gaps.
( 2) - Dwell meter on the six-cylinder scale.
\
\
\
\
\
\
THE TWO TYPES OF INJECTOR DRIVERS
OVERVIEW
There are two types of transistor driver circuits used to
operate electric fuel injectors: voltage controlled and current
controlled. The voltage controlled type is sometimes called a
"saturated switch" driver, while the current controlled type is
sometimes known as a "peak and hold" driver.
The basic difference between the two is the total resistance
of the injector circuit. Roughly speaking, if a particular leg in an
injector circuit has total resistance of 12 or more ohms, a voltage
control driver is used. If less than 12 ohms, a current control driver
is used.
It is a question of what is going to do the job of limiting
the current flow in the injector circuit; the inherent "high"
resistance in the injector circuit, or the transistor driver. Without
some form of control, the current flow through the injector would
cause the solenoid coil to overheat and result in a damaged injector.
VOLTAGE CONTROLLED CIRCUIT ("SATURATED SWITCH")
The voltage controlled driver inside the computer operates
much like a simple switch because it does not need to worry about
limiting current flow. Recall, this driver typically requires injector
circuits with a total leg resistance of 12 or more ohms.
The driver is either ON, closing/completing the circuit
(eliminating the voltage-drop), or OFF, opening the circuit (causing \
a
total voltage drop).
Some manufacturers call it a "saturated switch" driver. This
is because when switched ON, the driver allows the magnetic field in
the injector to build to saturation. This is the same "saturation"
property that you are familiar with for an ignition coil.
There are two ways "high" resistance can be built into an
injector circuit to limit current flow. One method uses an external
solenoid resistor and a low resistance injector, while the other uses
a high resistance injector without the solenoid resistor. See the left
side of Fig. 1.
In terms of injection opening time, the external resistor
voltage controlled circuit is somewhat faster than the voltage
controlled high resistance injector circuit. The trend, however, seems
to be moving toward use of this latter type of circuit due to its
lower cost and reliability. The ECU can compensate for slower opening