specification. Install front cover oil seal. See FRONT COVER OIL SEAL
Remove front cover seal installer.
4) Reverse removal procedures. Lubricate vibration damper
retaining bolt with oil prior to installation. Tighten bolts to
specification.
FRONT COVER OIL SEAL
Removal & Installation
1) Remove vibration damper. Using Seal Remover (J-9256),
remove seal from front cover. Position new seal on Front Cover Seal
Installer (J-22248) with lip facing outward.
2) Apply sealant to seal outer diameter. Lightly coat
crankshaft with oil. Place front cover seal installer on front of
crankshaft. Tap seal into front cover. Remove seal installer. Lightly
coat seal contact area of vibration damper with oil.
3) Install key in crankshaft (if removed). Install vibration\
damper. Lubricate vibration damper bolt with oil. Install retaining
bolt and washer. Tighten to specification.
CAMSHAFT & TIMING GEAR
Removal
1) Drain cooling system. Remove radiator. Remove engine front
cover. See ENGINE FRONT COVER. Remove distributor. Remove fuel pump
(if equipped with mechanical pump). Remove rocker arms and pushrods.
See ROCKER ARMS & BRIDGE under VALVES.
2) Remove valve lifters. Mark lifters for location. Remove
crankshaft oil slinger. Pull chain tensioner block toward tensioner
lever to compress spring. Hold block and move tensioner lever to lock
position. See Fig. 3.
3) Rotate crankshaft and align timing marks on crankshaft and
camshaft gears. Remove camshaft gear retaining bolt. Remove gears and
timing chain. Remove camshaft.
Fig. 3: Location of Chain Tensioner Lock
Courtesy of Chrysler Motors.
Inspection
Inspect camshaft for flaking, lobe wear or worn bearing
Step 1 ........................................ 40 (54)
Step 2 ........................................ 70 (95)
Step 3 ....................................... 80 (109)
Oil Pump Retaining Bolt
Short .......................................... 10 (14)
Long ........................................... 17 (23)
Oxygen Sensor .................................... 35 (47)
Pulley-to-Vibration Damper Bolt .................. 20 (27)
Rocker Arm Bolt .................................. 19 (26)
Throttle Body-to-Intake Bolt ..................... 16 (22)
Torque Converter Drive
Plate-to-Crankshaft Bolt .................... (1) 40 (54)
Vibration Damper Bolt ....................... ( 2) 80 (109)
Water Pump Bolt .................................. 13 (18)
INCH Lbs. (N.m)
Front Cover-to-Block
Bolt ............................................ 60 (7)
Stud .......................................... 192 (22)
Oil Pan Bolt
1/4" X 20 ....................................... 84 (9)
5/16" X 18 .................................... 132 (15)
Oil Pump Cover Bolt ............................... 70 (8)
Valve Cover Bolt .................................. 55 (5)
( 1) - Tighten to specification and an additional 60 degrees.
( 2) - With bolt cleaned and threads lubricated with oil.
\
\
\
\
\
\
ENGINE SPECIFICATIONS
GENERAL ENGINE SPECIFICATIONS
GENERAL ENGINE SPECIFICATIONS TABLE \
\
\
\
\
\
Application In. (mm)
Displacement
Cu. In. ............................................ 150
Liters ............................................. 2.5
Fuel System .......................................... TBI
HP @ RPM ...................................... 117 @ 5000
Torque Ft. Lbs. @ RPM ......................... 135 @ 3500
Compression Ratio .................................. 9.2:1
Bore ......................................... 3.88 (98.5)
Stroke ....................................... 3.19 (81.0)
\
\
\
\
\
\
VALVE SPECIFICATIONS
VALVE SPECIFICATIONS TABLE \
\
\
\
\
\
Application In. (mm)
Intake ( 1)
Head Diameter ................ 1.905-1.915 (48.38-48.60)
Face Angle ......................................... 44
Seat Angle ..................................... 44 30'
Seat Width ................... ( 2) .040-.060 (1.02-1.52)
Stem Diameter .................... .311-.312 (7.89-7.98)
Stem Clearance ..................... .001-.003 (.02-.08)
Valve Lift ................................ .424 (10.76)
emission control devices. This permits optimum engine performance
with minimum emissions.
OPERATION
The engine control system is divided into 6 sub-systems:
electronic control unit (also called the ECU or computer), sensors and\
switches, fuel control, emission control, idle speed control, and
ignition advance control.
ELECTRONIC CONTROL UNIT (ECU)
The ECU is located under the instrument panel, above the
accelerator pedal. It receives information from the 13 engine sensors
or switches to determine engine operating conditions at any particular
moment. The ECU responds to these signals by sending a control signal
to the fuel injector, fuel pump, ignition control module, idle speed
actuator (ISA) motor, EGR solenoid, and canister purge solenoid. It
also controls the Load Swap relay, and on Man. Trans. models, the up-
shift indicator lamp.
SENSORS & SWITCHES
Exhaust Gas Oxygen (EGO) Sensor
The amount of oxygen in exhaust gases varies according to the
air/fuel ratio of the intake charge. The exhaust gas oxygen sensor,
located in the exhaust pipe, detects this content and transmits a low
voltage signal to the ECU.
The outer surface of the sensor is exposed to exhaust gases,
the inner surface to outside air. The difference in the amount of
oxygen contacting the inner and outer surfaces of the sensor creates a
pressure, which results in a small voltage signal. This signal, which
is a measure of the unburned oxygen in the exhaust gas, is transmitted
to the ECU.
If the amount of oxygen in the exhaust system is low (rich
mixture), the sensor voltage signal will be high. If the mixture is
lean, the oxygen sensor will generate a low voltage signal.
The sensor has a heating element that keeps the sensor at
proper operating temperature during all operating modes.
Manifold Air/Fuel Temperature (MAT) Sensor
The manifold air/fuel temperature sensor is installed in the
intake manifold. This sensor provides a voltage signal to the ECU
representing the temperature of the air/fuel mixture in the intake
manifold. The ECU compensates for air density changes during high
temperature operation.
Coolant Temperature Sensor (CTS)
The coolant temperature sensor is located in the intake
manifold coolant jacket. This sensor provides a voltage signal to the
ECU. The ECU uses this signal to determine engine temperature. During
cold engine operation, the ECU responds by enriching the air/fuel
mixture delivered to the injector, compensating for fuel condensation
in the intake manifold, controlling engine warm-up speed, increasing
ignition advance, and inhibiting operation of the EGR system.
Manifold Absolute Pressure (MAP) Sensor
The MAP sensor detects absolute pressure in the intake
manifold as well as ambient atmospheric pressure. This information is
supplied to the ECU, through voltage signals, as an indication of
engine load. The sensor is attached to the plenum chamber near the
hood latch. A vacuum line from the throttle body supplies the sensor
with manifold pressure information.
Knock Sensor
The knock (detonation) sensor, located in the cylinder head,
provides an input signal to the ECU whenever detonation occurs. The
ECU then retards ignition advance to eliminate the detonation at the
applicable cylinders.
Speed Sensor
The speed sensor (or crankshaft position sensor) is mounted
at the flywheel/drive plate housing. The sensor detects the flywheel/
drive plate teeth as they pass during engine operation and sends an
electrical signal to the ECU, which calculates engine speed.
The flywheel/drive plate has a large trigger tooth and notch
located 90
and 12 small teeth before each top dead center (TDC)
position. When a small tooth or notch pass the magnetic core in the
sensor, the build-up and collapse of the magnetic field induces a
small voltage signal in the sensor pick-up windings.
The ECU counts these signals representing the number of teeth
as they pass the sensor. When a larger trigger tooth and notch pass
the magnetic core, a higher voltage signal is sent to the ECU. This
indicates to the ECU that a piston will be at the TDC position 12
teeth later. The ECU either advances or retards ignition timing as
necessary according to sensor inputs.
Battery Voltage
Battery voltage input to the ECU ensures that proper voltage
is applied to the injector. The ECU varies voltage to compensate for
battery voltage fluctuations.
Starter Motor Relay
The engine starter motor relay provides an input to the ECU,
indicating the starter motor is engaged.
Wide Open Throttle (WOT) Switch
The WOT switch is mounted on the side of the throttle body.
The switch provides a voltage signal to the ECU under wide open
throttle conditions. The ECU responds to this signal by enriching the
air/fuel mixture delivered to the injector.
Closed Throttle (Idle) Switch
This switch is integral with the idle speed actuator (ISA)
motor. The switch provides a voltage signal to the ECU, which
increases or decreases the throttle stop angle in response to engine
operating conditions.
Transmission Gear Position Indicator
The gear position indicator is mounted on vehicles equipped
with automatic transaxles. It provides a signal to the ECU to
indicate that the transaxle is in a driving mode and not in Park or
Neutral.
Power Steering Pressure Switch
The switch increases the idle speed during periods of high
power steering pump load and low engine RPM.
A/C Switch
The A/C switch sends a signal to the ECU when the air
conditioner is operating and when the compressor clutch must be
engaged to lower the temperature. The ECU, in turn, increases engine
speed to compensate for the added load of the air conditioner.
FUEL CONTROL
An electric in-tank fuel pump supplies fuel through the fuel
filter located under the right rear floor pan to the throttle body,
maintaining a constant operating pressure. Fuel enters the fuel bowl
reservoir of the throttle body through the injector and overflow type
fuel pressure regulator. The fuel pump is controlled by the ECU. A
ballast resistor attached to the right side of the plenum chamber,
reduces fuel pump speed after engine is running. The resistor is
by-passed in the "Start" position.
The fuel injector and fuel pressure regulator are integral
components of the throttle body. The injector is electronically-
controlled by the ECU. See Fig. 15.
Fig. 2: Cross Section View of Injector
The fuel pressure regulator is a diaphragm-operated relief
valve which maintains fuel pressure of 17.3 psi (1.2 kg/cm
). See
Fig. 16. Fuel in excess of this pressure is returned to fuel tank by a
Fig. 4: Location of ECU-Controlled Relays
Load Swap Relay
The Load Swap Relay is used on models with A/C and power
steering. The relay works in conjunction with the power steering
pressure switch to disengage the A/C compressor clutch.
If the compressor clutch is engaged when the power steering
pressure switch contacts close, the input signal from the switch to
the ECU also activates the load swap relay. The relay contacts open,
cutting off electrical feed to the compressor clutch. The clutch
remains disengaged until the pressure switch contacts reopen and
engine idle returns to normal.
NOTE: The load swap relay does not reengage the compressor clutch
immediately. The relay has a timer that delays energizing
the clutch for .5 second to ensure smooth engagement.
Fuel Pump Control Relay
Battery voltage is applied to the relay through the ignition
switch. The relay is energized when a ground is provided by the ECU.
When energized, voltage is applied to the fuel pump See Fig. 15.
A/C Clutch Relay
The ECU controls the A/C compressor clutch by means of the
A/C clutch relay. See Fig. 15.
UP-SHIFT INDICATOR LAMP
Manual transaxle vehicles are equipped with an up-shift
indicator lamp. The lamp is normally turned on when the ignition
switch is turned "ON", and is turned off when the engine starts.
The lamp will again light during engine operation, according
to engine speed and load conditions. A switch, located on the
transaxle, prevents lamp from lighting when transmission is shifted
to the next highest gear. If the shift of gears is not performed, the
ECU will turn the lamp off after 3-5 seconds.
MODES OF OPERATION
IGNITION SWITCH "ON" MODE
When the TBI system is activated by the ignition switch, the
system power relay is energized, and the fuel pump is energized by
the ECU through the fuel pump relay. The pump will operate for
approximately 1 second, unless the engine is operating or the starter
motor is engaged.
The ECU receives input from the CTS, MAT, and MAP sensors.
The up-shift indicator lamp is illuminated.
ENGINE START-UP MODE
When the starter motor is engaged, the ECU receives inputs
from the CTS and speed sensors, the starter motor relay, and the wide
open throttle switch. The fuel pump is activated by the ECU and
voltage is applied to the injector, with the ECU controlling
injection time.
The ECU determines proper ignition timing from the speed
sensor input. If the wide open throttle switch is engaged, the ECU
will deactivate the injector to prevent flooding.
ENGINE WARM-UP MODE
The ECU receives inputs from the CTS, MAT, MAP, speed, and
knock sensors. It also is informed of throttle, gear (automatic
transaxle models) and A/C control position.
The ECU provides a ground for the injector, precisely
controlling fuel delivery to the engine. The ECU also controls
ignition timing, engine idle speed and throttle stop angle. On
vehicles with manual transmissions, the up-shift indicator lamp is
controlled according to engine speed and load.
CRUISE MODE
During cruising speed, the ECU receives inputs from the CTS,
MAT, MAP, EGO, speed and knock sensors. It is also informed of
throttle, gear (automatic transaxle models), and A/C control position.\
The ECU provides a ground to the injector, precisely
controlling injector time. It also controls idle speed, throttle stop
angle, ignition timing, air/fuel mixture ratio and up-shift indicator
lamp.
DECELERATION MODE
During deceleration, the ECU receives inputs from the CTS,
1) If all components have been checked and/or repaired, but
a system failure or problem still exists, the ECU may be at fault.
However, the ECU is a very reliable unit and must always be the final
component replaced if a doubt exists concerning the cause of a system
failure.
2) The only way to confirm an ECU malfunction is to take the
unit to an AMC dealer to have it tested. This is the only sure way to
avoid replacing a good ECU.
SYSTEM DIAGNOSIS
PRELIMINARY CHECKS
Be sure fuel is actually reaching the injector. Make sure no
air is entering the intake or exhaust system above the catalytic
converter. Before assuming an engine control system malfunction,
inspect the following systems to ensure components are in good
condition and are operating properly.
* All support systems and wiring.
* Battery connections and specific gravity.
* Electrical and vacuum connections on components and sensors.
* Emission control devices.
* Ignition system.
* Vacuum hoses.
CAUTION: Never connect or disconnect a component without turning the
ignition switch off. Never apply more than 12 volts or AC
voltage to system terminals. Disconnect battery cables
before charging it. Remove ECU if temperatures are expected
to exceed 176
F (80 C), such as in a paint shop bake oven.
DIAGNOSTIC TEST CHARTS
Following are 6 different diagnostic test flow charts,
providing the shortest means of testing the system. These include:
* Ignition Switch "OFF" Chart - Tests system power for ECU
memory keep-alive voltage.
* Ignition Switch "ON" Power Chart - Tests system power
function and fuel pump power function.
* Ignition Switch "ON" Input Chart - Tests closed throttle
(idle) switch, wide open throttle (WOT) switch, manifold
absolute pressure (MAP) sensor, park/neutral switch, coolant
temperature sensor (CTS), manifold air/fuel temperature (MAT\
)
sensor and the respective switch or sensor circuits.
* System Operational Chart - Tests engine start-up and fuel
injector circuits, plus function of closed loop air/fuel
mixture, coolant temperature sensor, manifold air/fuel
temperature sensor, knock sensor and closed loop ignition
retard/advance, EGR valve and canister purge solenoid, idle
speed actuator, and A/C control.
* Basic Engine Chart - Indicates possible failures within other
engine related components.
* Man. Trans. Up-shift Chart - Tests up-shift indicator lamp
function on manual transmission vehicles.