DTC P0181 FTT SENSOR
EC-343
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2006 January2006 M35/M45
DTC P0181 FTT SENSORPFP:22630
Component DescriptionNBS004Y0
The fuel tank temperature sensor (3) is used to detect the fuel tem-
perature inside the fuel tank. The sensor modifies a voltage signal
from the ECM. The modified signal returns to the ECM as the fuel
temperature input. The sensor uses a thermistor which is sensitive to
the change in temperature. The electrical resistance of the ther-
mistor decreases as temperature increases.
Fuel level sensor unit and fuel pump (1)
Fuel pressure regulator (2)
*: These data are reference values and are measured between ECM terminal 107
(Fuel tank temperature sensor) and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output
voltage. Doing so may result in damage to the ECM's transistor.
Use a ground other than ECM terminals, such as the ground.
On Board Diagnosis LogicNBS004Y1
DTC Confirmation ProcedureNBS004Y2
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Turn ignition switch ON.
2. Select “DATA MONITOR” mode with CONSULT-II.
3. Wait at least 10 seconds.
If the result is NG, go to EC-346, "
Diagnostic Procedure" .
If the result is OK, go to following step.
4. Check “COOLAN TEMP/S” value.
If “COOLAN TEMP/S” is less than 60
C (140F), the result will
be OK.
If “COOLAN TEMP/S” is above 60
C (140F), go to the following
step.
5. Cool engine down until “COOLAN TEMP/S” is less than 60
C
(140
F).
6. Wait at least 10 seconds.
7. If 1st trip DTC is detected, go to EC-346, "
Diagnostic Procedure" .
PBIB2707E
Fluid temperature
C (F)Voltage*
VResistance
k
20 (68) 3.5 2.3 - 2.7
50 (122) 2.2 0.79 - 0.90
SEF012P
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0181
0181Fuel tank temperature
sensor circuit range/
performanceRationally incorrect voltage from the sensor is
sent to ECM, compared with the voltage sig-
nals from engine coolant temperature sensor
and intake air temperature sensor.
Harness or connectors
(The sensor circuit is open or shorted)
Fuel tank temperature sensor
SEF174Y
EC-362
[VQ35DE]
DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MIS-
FIRE
Revision: 2006 January2006 M35/M45
WITH CONSULT-II
1. Turn ignition switch ON, and select “DATA MONITOR” mode
with CONSULT-II.
2. Start engine and warm it up to normal operating temperature.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Restart engine and let it idle for about 15 minutes.
5. If 1st trip DTC is detected, go to EC-362, "
Diagnostic Procedure"
.
NOTE:
If 1st trip DTC is not detected during above procedure, perform-
ing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain
time. Refer to the table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
The time to driving varies according to the engine speed in the freeze frame data.
WITH GST
Follow the procedure “WITH CONSULT-II” above.
Diagnostic ProcedureNBS004YO
1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE
1. Start engine and run it at idle speed.
2. Listen for the sound of the intake air leak.
3. Check PCV hose connection.
OK or NG
OK >> GO TO 2.
NG >> Discover air leak location and repair.
2. CHECK FOR EXHAUST SYSTEM CLOGGING
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.
OK or NG
OK (With CONSULT-II)>>GO TO 3.
OK (Without CONSULT-II>>GO TO 4.
NG >> Repair or replace it.
PBIB0164E
Engine speed Engine speed in the freeze frame data 400 rpm
Vehicle speed Vehicle speed in the freeze frame data
10 km/h (6 MPH)
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70
C (158 F),
T should be lower than 70
C (158 F).
When the freeze frame data shows higher than or equal to 70
C (158 F),
T should be higher than or equal to 70
C (158 F).
Engine speed Time
Around 1,000 rpm Approximately 10 minutes
Around 2,000 rpm Approximately 5 minutes
More than 3,000 rpm Approximately 3.5 minutes
EC-412
[VQ35DE]
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Revision: 2006 January2006 M35/M45
DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionNBS004ZO
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeNBS004ZP
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge vol-
ume control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No loadIdle
(Accelerator pedal: Not depressed even
slightly, after engine starting.)0%
2,000 rpm —
EC-420
[VQ35DE]
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VALVE
Revision: 2006 January2006 M35/M45
DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID
VA LV E
PFP:14920
DescriptionNBS004ZW
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeNBS004ZX
Specification data are reference values.
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge vol-
ume control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*
1
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Air fuel ratio (A/F) sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Fuel tank temperature sensor Fuel temperature in fuel tank
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Selector lever: P or N
Air conditioner switch: OFF
No loadIdle
(Accelerator pedal: Not depressed even
slightly, after engine starting.)0%
2,000 rpm —
EC-512
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2006 January2006 M35/M45
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
DescriptionNBS00532
SYSTEM DESCRIPTION
NOTE:
If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC
U1000, U1001. Refer to EC-173, "
DTC U1000, U1001 CAN COMMUNICATION LINE" .
If DTC P1217 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
Refer to EC-176, "
DTC U1010 CAN COMMUNICATION" .
Cooling Fan Control
*1: The ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to ECM through CAN communication line.
ECM controls cooling fan speed corresponding to vehicle speed, engine coolant temperature, air conditioner
ON signal, refrigerant pressure, target A/C evaporator temperature and A/C evaporator temperature.
Cooling fan control signal is sent to IPDM E/R from ECM by CAN communication line. Then, IPDM E/R sends
ON/OFF pulse duty signal to cooling fan control module. Corresponding to this ON/OFF pulse duty signal,
cooling fan control module gives cooling fan motor operating voltage to cooling fan motors. Cooling fan speed
is controlled by duty cycle of cooling fan motor operating voltage sent from cooling fan control module.
COMPONENT DESCRIPTION
Cooling Fan Control Module
Cooling fan control module (1) receives ON/OFF pulse duty signal
from IPDM E/R. Corresponding to this ON/OFF pulse duty signal,
cooling fan control module sends cooling fan motor operating volt-
age to cooling fan motor. The revolution speed of cooling fan motor
is controlled by duty cycle of the voltage.
: Vehicle front
Cooling fan motor-1 harness connector (2)
Cooling fan motor-2 harness connector (3)
Sensor Input signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
Cooling fan
control
IPDM E/R
Cooling fan relay
Cooling fan control
module Battery
Battery voltage*
1
Wheel sensor
Vehicle speed*2
Engine coolant temperature sensor Engine coolant temperature
Air conditioner switch
Air conditioner ON signal*
2
Refrigerant pressure sensor Refrigerant pressure
Unified meter and A/C amp.
Target A/C evaporator temperature*
2
Intake sensor
A/C evaporator temperature*2
PBIB2691E
DTC P1217 ENGINE OVER TEMPERATURE
EC-513
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2006 January2006 M35/M45
Cooling Fan Motor
Cooling fan motor receives cooling fan motor operating voltage from
cooling fan control module (1). The revolution speed of cooling fan
motor is controlled by duty cycle of the voltage.
: Vehicle front
Cooling fan motor-1 harness connector (2)
Cooling fan motor-2 harness connector (3)
CONSULT-II Reference Value in Data Monitor ModeNBS00533
Specification data are reference values.
On Board Diagnosis LogicNBS00534
If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will
rise.
When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is
indicated.
This self-diagnosis has the one trip detection logic.
CAUTION:
When a malfunction is indicated, be sure to replace the coolant. Refer to CO-11, "
Changing Engine
Coolant" . Also, replace the engine oil. Refer to LU-9, "Changing Engine Oil" .
1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to
use coolant with the proper mixture ratio. Refer to MA-13, "
Anti-Freeze Coolant Mixture Ratio" .
2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.
Overall Function CheckNBS00535
Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be con-
firmed.
WAR NING :
Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pres-
sure fluid escaping from the radiator.
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up
pressure to escape. Then turn the cap all the way off.
PBIB2691E
MONITOR ITEM CONDITION SPECIFICATION
FA N D U T Y
Engine: Running 0 - 100%
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P1217
1217Engine over tempera-
ture (Overheat)
Cooling fan does not operate properly (Over-
heat).
Cooling fan system does not operate prop-
erly (Overheat).
Engine coolant was not added to the system
using the proper filling method.
Engine coolant is not within the specified
range.
Harness or connectors
(The cooling fan circuit is open or
shorted.)
IPDM E/R
Cooling fan control module
Cooling fan motor
Radiator hose
Radiator
Radiator cap
Water pump
Thermostat
For more information, refer to EC-522,
"Main 12 Causes of Overheating" .
EC-514
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2006 January2006 M35/M45
WITH CONSULT-II
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking coolant level.
If the coolant level in the reservoir tank and/or radiator is below
the proper range, skip the following steps and go to EC-517,
"Diagnostic Procedure" .
2. Confirm whether customer filled the coolant or not. If customer
filled the coolant, skip the following steps and go to EC-517,
"Diagnostic Procedure" .
3. Turn ignition switch ON.
4. Perform “FAN DUTY CONTROL” in “ACTIVE TEST” mode with
CONSULT-II.
5. Make sure that cooling fan speed varies according to the per-
cent.
6. If the results are NG, go to EC-517, "
Diagnostic Procedure" .
WITH GST
1. Check the coolant level in the reservoir tank and radiator.
Allow engine to cool before checking coolant level.
If the coolant level in the reservoir tank and/or radiator is below
the proper range, skip the following steps and go to EC-517,
"Diagnostic Procedure" .
2. Confirm whether customer filled the coolant or not. If customer
filled the coolant, skip the following steps and go to EC-517,
"Diagnostic Procedure" .
3. Perform IPDM E/R auto active test and check cooling fan motors
operation, refer to PG-24, "
Auto Active Test" .
4. If NG, go to EC-517, "
Diagnostic Procedure" .
SEF621W
PBIB2737E
SEF621W
EC-518
[VQ35DE]
DTC P1217 ENGINE OVER TEMPERATURE
Revision: 2006 January2006 M35/M45
4. CHECK THERMOSTAT
1. Check valve seating condition at normal room temperatures.
It should seat tightly.
2. Check valve opening temperature and valve lift.
3. Check if valve is closed at 5
C (9F) below valve opening tem-
perature.
For details, refer to CO-29, "
WATER INLET AND THERMO-
STAT ASSEMBLY" .
OK or NG
OK >> GO TO 5.
NG >> Replace thermostat
5. CHECK ENGINE COOLANT TEMPERATURE SENSOR
Refer to EC-230, "
Component Inspection" .
OK or NG
OK >> GO TO 6.
NG >> Replace engine coolant temperature sensor.
6. CHECK MAIN 12 CAUSES
If the cause cannot be isolated, go to EC-522, "
Main 12 Causes of Overheating" .
>>INSPECTION END
7. CHECK COOLING FAN CONTROL MODULE POWER SUPPLY CIRCUIT-I
1. Turn ignition switch OFF.
2. Disconnect cooling fan control module (1) harness connector
E42.
–: Vehicle front
–Cooling fan motor-1 harness connector (2)
–Cooling fan motor-2 harness connector (3)
3. Turn ignition switch ON.
4. Check voltage between cooling fan control module terminal 3
and ground with CONSULT-II or tester.
OK or NG
OK >> GO TO 8.
NG >> GO TO 16.Valve opening temperature: 76.5
C (170F) [standard]
Valve lift: More than 8.6 mm/90
C
(0.339 in/194
F)
SLC949A
PBIB2691E
Voltage: Battery voltage
PBIA9509J