INDEX FOR DTC EC-21
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45HO2S2 (B1) P0137 0137 EC-270
HO2S2 (B1) P0138 0138EC-281
HO2S2 (B1) P0139 0139EC-294
HO2S2 (B2) P0157 0157EC-270
HO2S2 (B2) P0158 0158EC-281
HO2S2 (B2) P0159 0159EC-294
HO2S2 HTR (B1) P0037 0037EC-173
HO2S2 HTR (B1) P0038 0038EC-173
HO2S2 HTR (B2) P0057 0057EC-173
HO2S2 HTR (B2) P0058 0058EC-173
I/C SOLENOID/CIRC P1752 1752 AT- 1 4 6
I/C SOLENOID FNCTN P1754 1754AT- 1 4 8
IAT SEN/CIRCUIT P0112 0112EC-205
IAT SEN/CIRCUIT P0113 0113EC-205
IAT SENSOR P0127 0127EC-225
ICC COMMAND VALUE*6P1568 1568EC-528
IN PULY SPEED P1715 1715 EC-550
INT/V TIM CONT-B1 P0011 0011EC-161
INT/V TIM CONT-B2 P0021 0021EC-161
INT/V TIM V/CIR-B1 P0075 0075EC-181
INT/V TIM V/CIR-B2 P0081 0081EC-181
ISC SYSTEM P0506 0506EC-468
ISC SYSTEM P0507 0507EC-470
KNOCK SEN/CIRC-B1 P0327 0327EC-356
KNOCK SEN/CIRC-B1 P0328 0328EC-356
L/PRESS SOL/CIRC P0745 0745 AT- 1 2 9
LC/B SOLENOID FNCT P1774 1774AT- 1 6 4
LC/B SOLENOID/CIRC P1772 1772AT- 1 6 2
MAF SEN/CIRCUIT P0101 0101EC-188
MAF SEN/CIRCUIT P0102 0102EC-197
MAF SEN/CIRCUIT P0103 0103EC-197
MULTI CYL MISFIRE P0300 0300EC-346
NATS MALFUNCTION P1610 - P1615 1610 - 1615 EC-53
NO DTC IS DETECTED.
FURTHER TESTING
MAY BE REQUIRED. P0000 0000 —
P-N POS SW/CIRCUIT P0850 0850 EC-489
PNP SW/CIRC P0705 0705 AT- 11 2
PURG VOLUME CONT/V P0443 0443EC-397
PURG VOLUME CONT/V P0444 0444EC-405
PURG VOLUME CONT/V P0445 0445EC-405
PW ST P SEN/CIRC P0550 0550EC-472
SENSOR POWER/CIRC P0643 0643EC-484
Items
(CONSULT-II screen terms) DTC*
1
Reference page
CONSULT-II
GST*
2ECM*3
EC-22
[VQ35DE]
INDEX FOR DTC
Revision: 2006 December 2006 FX35/FX45
*1: 1st trip DTC No. is the same as DTC No.
*2: This number is prescribed by SAE J2012.
*3: In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.
*4: The troubleshooting for this DTC needs CONSULT-II.
*5: When the fail-safe operations for both self-diagnoses occur, the MIL illuminates.
*6: For models with ICC system. TCM P0700 0700
AT- 111
TCC SOLENOID/CIRC P0740 0740AT-125
TCS C/U FUNCTN P1211 1211EC-495
TCS/CIRC P1212 1212EC-496
THERMSTAT FNCTN P0128 0128EC-228
TP SEN 1/CIRC P0222 0222EC-339
TP SEN 1/CIRC P0223 0223EC-339
TP SEN 2/CIRC P0122 0122EC-215
TP SEN 2/CIRC P0123 0123EC-215
TP SENSOR P2135 2135EC-589
TURBINE SENSOR P0717 0717 AT- 11 6
TW CATALYST SYS-B1 P0420 0420EC-377
TW CATALYST SYS-B2 P0430 0430EC-377
VEH SPD SEN/CIR AT*5P0720 0720AT- 11 8
VEH SPEED SEN/CIRC*5P0500 0500EC-466
VENT CONTROL VALVE P0447 0447 EC-412
VENT CONTROL VALVE P0448 0448EC-419
Items
(CONSULT-II screen terms) DTC*
1
Reference page
CONSULT-II
GST*
2ECM*3
PRECAUTIONS EC-23
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
PRECAUTIONSPFP:00001
Precautions for Supplemental Restraint System (SRS) “AIR BAG” and “SEAT
BELT PRE-TENSIONER”
NBS003KW
The Supplemental Restraint System such as “AIR BAG” and “SEAT BELT PRE-TENSIONER”, used along
with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain
types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS
system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front
air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Man-
ual.
WARNING:
To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance must be per-
formed by an authorized NISSAN/INFINITI dealer.
Improper maintenance, including incorrect removal and installation of the SRS, can lead to per-
sonal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air
Bag Module, see the SRS section.
Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this
Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or
harness connectors.
On Board Diagnostic (OBD) System of Engine and A/TNBS003KX
The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any
repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves,
etc. will cause the MIL to light up.
Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will
cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-
locking type harness connector. For description and how to disconnect, refer to PG-72, "
HAR-
NESS CONNECTOR" .
Be sure to route and secure the harnesses properly after work. The interference of the harness
with a bracket, etc. may cause the MIL to light up due to the short circuit.
Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
etc.
Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and
TCM (Transmission control module) before returning the vehicle to the customer.
PrecautionNBS003KY
Always use a 12 volt battery as power source.
Do not attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative
battery cable. Failure to do so may damage the ECM
because battery voltage is applied to ECM even if ignition
switch is turned OFF.
Before removing parts, turn ignition switch OFF and then
disconnect negative battery cable.
SEF289H
PRECAUTIONS EC-25
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Before replacing ECM, perform “ECM Terminals and Refer-
ence Value” inspection and make sure ECM functions prop-
erly. Refer to EC-110, "
ECM Terminals and Reference Value"
.
Handle mass air flow sensor carefully to avoid damage.
Do not disassemble mass air flow sensor.
Do not clean mass air flow sensor with any type of deter-
gent.
Do not disassemble electric throttle control actuator.
Even a slight leak in the air intake system can cause seri-
ous incidents.
Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).
After performing each TROUBLE DIAGNOSIS, perform DTC
Confirmation Procedure or Overall Function Check.
The DTC should not be displayed in the DTC Confirmation
Procedure if the repair is completed. The Overall Function
Check should be a good result if the repair is completed.
When measuring ECM signals with a circuit tester, never
allow the two tester probes to contact.
Accidental contact of probes will cause a short circuit and
damage the ECM power transistor.
Do not use ECM ground terminals when measuring input/
output voltage. Doing so may result in damage to the ECM's
transistor. Use a ground other than ECM terminals, such as
the ground.
MEF040D
SEF217U
SEF348N
PREPARATION EC-27
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
PREPARATIONPFP:00002
Special Service ToolsNBS003KZ
The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here. Tool number
(Kent-Moore No.)
Tool name Description
KV10117100
(J-36471-A)
Heated oxygen
sensor wrench Loosening or tightening heated oxygen sensor
with 22 mm (0.87 in) hexagon nut
KV10114400
(J-38365)
Heated oxygen
sensor wrench Loosening or tightening air fuel ratio (A/F) sensor
a: 22 mm (0.87 in)
(J-44321)
Fuel pressure gauge
kit Checking fuel pressure
(J-44321-6)
Fuel pressure adapter Connecting fuel pressure gauge to quick
connector type fuel lines.
(J-44626)
Air fuel ratio (A/F)
sensor wrench Loosening or tightening air fuel ratio (A/F) sensor
1
(J-45488)
Quick connector
release Remove fuel tube quick connectors in engine
room.
S-NT379
S-NT636
LEC642
LBIA0376E
LEM054
PBIC0198E
PREPARATION EC-29
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Commercial Service ToolsNBS003L0
Tool name
(Kent-Moore No.) Description
Leak detector
i.e.: (J-41416) Locating EVAP leak
EVAP service port
adapter
i.e.: (J-41413-OBD) Applying positive pressure through EVAP service
port
Fuel filler cap adapter
i.e.: (MLR-8382) Checking fuel tank vacuum relief valve opening
pressure
Socket wrench Removing and installing engine coolant temperature sensor
Oxygen sensor thread
cleaner
i.e.: (J-43897-18)
(J-43897-12) Reconditioning the exhaust system threads
before installing a new oxygen sensor. Use with
anti-seize lubricant shown below.
a: 18 mm diameter with pitch 1.5 mm for
Zirconia Oxygen Sensor
b: 12 mm diameter with pitch 1.25 mm for
Titania Oxygen Sensor
Anti-seize lubricant
i.e.: (Permatex
TM
133AR or equivalent
meeting MIL
specification MIL-A-
907) Lubricating oxygen sensor thread cleaning tool
when reconditioning exhaust system threads.
S-NT703
S-NT704
S-NT815
S-NT705
AEM488
S-NT779
ENGINE CONTROL SYSTEM EC-31
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
Multiport Fuel Injection (MFI) SystemNBS003L2
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system under normal conditions.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
During warm-up
When starting the engine
During acceleration
Hot-engine operation
When selector lever is changed from N to D
High-load, high-speed operation
During deceleration
During high engine speed operation
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS) Engine speed*
3
Piston position
Fuel injection
& mixture ratio
control Fuel injector
Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Air fuel ratio (A/F) sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch Gear position
Knock sensor Engine knocking condition
Battery Battery voltage*
3
Power steering pressure sensor Power steering operation
Heated oxygen sensor 2*
1Density of oxygen in exhaust gas
Air conditioner switch Air conditioner operation*
2
Wheel sensorVehicle speed*2
EC-32
[VQ35DE]
ENGINE CONTROL SYSTEM
Revision: 2006 December 2006 FX35/FX45
MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)
The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control.
The three way catalyst 1 can then better reduce CO, HC and NOx emissions. This system uses air fuel ratio
(A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM
adjusts the injection pulse width according to the sensor voltage signal. For more information about air fuel
ratio (A/F) sensor 1, refer to EC-240, "
DTC P0131, P0151 A/F SENSOR 1" . This maintains the mixture ratio
within the range of stoichiometric (ideal air-fuel mixture).
This stage is referred to as the closed loop control condition.
Heated oxygen sensor 2 is located downstream of the three way catalyst 1. Even if the switching characteris-
tics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from
heated oxygen sensor 2.
Open Loop Control
The open loop system condition refers to when the ECM detects any of the following conditions. Feedback
control stops in order to maintain stabilized fuel combustion.
Deceleration and acceleration
High-load, high-speed operation
Malfunction of air fuel ratio (A/F) sensor 1 or its circuit
Insufficient activation of air fuel ratio (A/F) sensor 1 at low engine coolant temperature
High engine coolant temperature
During warm-up
After shifting from N to D
When starting the engine
MIXTURE RATIO SELF-LEARNING CONTROL
The mixture ratio feedback control system monitors the mixture ratio signal transmitted from air fuel ratio (A/F)
sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to
the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as orig-
inally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic
changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.
Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is
then computed in terms of “injection pulse duration” to automatically compensate for the difference between
the two ratios.
“Fuel trim” refers to the feedback compensation value compared against the basic injection duration. Fuel trim
includes short term fuel trim and long term fuel trim.
“Short term fuel trim” is the short-term fuel compensation used to maintain the mixture ratio at its theoretical
value. The signal from air fuel ratio (A/F) sensor 1 indicates whether the mixture ratio is RICH or LEAN com-
pared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and
an increase in fuel volume if it is lean.
“Long term fuel trim” is overall fuel compensation carried out long-term to compensate for continual deviation
of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences,
wear over time and changes in the usage environment.
PBIB3020E