BASIC SERVICE PROCEDURE EC-81
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
15. CHECK IGNITION TIMING AGAIN
1. Run engine at idle.
2. Check ignition timing with a timing light. Refer to EC-82, "
IGNITION TIMING" .
OK or NG
OK >> GO TO 19.
NG >> GO TO 16.
16. CHECK TIMING CHAIN INSTALLATION
Check timing chain installation. Refer to EM-64, "
TIMING CHAIN" .
OK or NG
OK >> GO TO 17.
NG >> 1. Repair the timing chain installation.
2. GO TO 4.
17. DETECT MALFUNCTIONING PART
Check the following.
Check camshaft position sensor (PHASE) and circuit.
Refer to EC-368, "
DTC P0340, P0345 CMP SENSOR (PHASE)" .
Check crankshaft position sensor (POS) and circuit.
Refer to EC-361, "
DTC P0335 CKP SENSOR (POS)" .
OK or NG
OK >> GO TO 18.
NG >> 1. Repair or replace.
2. GO TO 4.
18. CHECK ECM FUNCTION
1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-205, "
IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)" .
>> GO TO 4.
19. INSPECTION END
Did you replace the ECM, referring this Basic Inspection procedure?
Ye s o r N o
Ye s > > 1 . P e r f o r m EC-83, "VIN Registration" .
2. INSPECTION END
No >> INSPECTION END
15
± 5 ° BTDC (in P or N position)
PBIB1602E
EC-84
[VQ35DE]
BASIC SERVICE PROCEDURE
Revision: 2006 December 2006 FX35/FX45
Accelerator Pedal Released Position LearningNBS003LT
DESCRIPTION
Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accel-
erator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time
harness connector of accelerator pedal position sensor or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON and wait at least 2 seconds.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Turn ignition switch ON and wait at least 2 seconds.
5. Turn ignition switch OFF and wait at least 10 seconds.
Throttle Valve Closed Position LearningNBS003LU
DESCRIPTION
Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by
monitoring the throttle position sensor output signal. It must be performed each time harness connector of
electric throttle control actuator or ECM is disconnected.
OPERATION PROCEDURE
1. Make sure that accelerator pedal is fully released.
2. Turn ignition switch ON.
3. Turn ignition switch OFF and wait at least 10 seconds. Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.
Idle Air Volume LearningNBS003LV
DESCRIPTION
Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific
range. It must be performed under any of the following conditions:
Each time electric throttle control actuator or ECM is replaced.
Idle speed or ignition timing is out of specification.
PREPARATION
Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied.
Learning will be cancelled if any of the following conditions are missed for even a moment.
Battery voltage: More than 12.9V (At idle)
Engine coolant temperature: 70 - 100 °C (158 - 212 °F)
Park/neutral position switch: ON
Electric load switch: OFF
(Air conditioner, headlamp, rear window defogger)
On vehicles equipped with daytime light systems, if the parking brake is applied before the engine
is started the headlamp will not be illuminated.
Steering wheel: Neutral (Straight-ahead position)
Vehicle speed: Stopped
Transmission: Warmed-up
For models with CONSULT-II, drive vehicle until “ATF TEMP SE 1” in “DATA MONITOR” mode of “A/T”
system indicates less than 0.9V.
For models without CONSULT-II, drive vehicle for 10 minutes.
OPERATION PROCEDURE
With CONSULT-II
1. Perform EC-84, "Accelerator Pedal Released Position Learning" .
2. Perform EC-84, "
Throttle Valve Closed Position Learning" .
3. Start engine and warm it up to normal operating temperature.
4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
BASIC SERVICE PROCEDURE EC-85
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
5. Select “IDLE AIR VOL LEARN” in “WORK SUPPORT” mode.
6. Touch “START” and wait 20 seconds.
7. Make sure that “CMPLT” is displayed on CONSULT-II screen. If “CMPLT” is not displayed, Idle Air Volume Learning will not be
carried out successfully. In this case, find the cause of the inci-
dent by referring to the DIAGNOSTIC PROCEDURE below.
8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.
Without CONSULT-II
NOTE:
It is better to count the time accurately with a clock.
It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit
has a malfunction.
1. Perform EC-84, "
Accelerator Pedal Released Position Learning" .
2. Perform EC-84, "
Throttle Valve Closed Position Learning" .
3. Start engine and warm it up to normal operating temperature.
4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
5. Turn ignition switch OFF and wait at least 10 seconds.
6. Confirm that accelerator pedal is fully released, then turn ignition switch ON and wait 3 seconds.
7. Repeat the following procedure quickly 5 times within 5 seconds.
a. Fully depress the accelerator pedal.
b. Fully release the accelerator pedal.
8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
9. Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
10. Start engine and let it idle.
SEF217Z
SEF454Y
ITEM SPECIFICATION
Idle speed 650 ± 50 rpm (in P or N position)
Ignition timing 15 ± 5 ° BTDC (in P or N position)
MBIB0238E
EC-88
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
TROUBLE DIAGNOSISPFP:00004
Trouble Diagnosis IntroductionNBS003LX
INTRODUCTION
The engine has an ECM to control major systems such as fuel con-
trol, ignition control, idle air control system, etc. The ECM accepts
input signals from sensors and instantly drives actuators. It is essen-
tial that both input and output signals are proper and stable. At the
same time, it is important that there are no malfunctions such as vac-
uum leaks, fouled spark plugs, or other malfunctions with the engine.
It is much more difficult to diagnose an incident that occurs intermit-
tently rather than continuously. Most intermittent incidents are
caused by poor electric connections or improper wiring. In this case,
careful checking of suspected circuits may help prevent the replace-
ment of good parts.
A visual check only may not find the cause of the incidents. A road
test with CONSULT-II (or GST) or a circuit tester connected should
be performed. Follow the WORK FLOW on EC-89, "
WORK FLOW" .
Before undertaking actual checks, take a few minutes to talk with a
customer who approaches with a driveability complaint. The cus-
tomer can supply good information about such incidents, especially
intermittent ones. Find out what symptoms are present and under
what conditions they occur. A DIAGNOSTIC WORKSHEET like the
example on EC-92, "
DIAGNOSTIC WORKSHEET" should be used.
Start your diagnosis by looking for conventional malfunctions first.
This will help troubleshoot driveability malfunctions on an electroni-
cally controlled engine vehicle.
MEF036D
SEF233G
SEF234G
EC-92
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE
Inspect according to Diagnostic Procedure of the system.
NOTE:
The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection
is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-
28, "How to Perform Efficient Diagnosis for an Electrical Incident" .
Is malfunctioning part detected?
Yes >> GO TO 11.
No >> Monitor input data from related sensors or check voltage of related ECM terminals using CON- SULT-II. Refer to EC-133, "
CONSULT-II Reference Value in Data Monitor" , EC-110, "ECM Termi-
nals and Reference Value" .
11 . REPAIR OR REPLACE THE MALFUNCTIONING PART
1. Repair or replace the malfunctioning part.
2. Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replace- ment.
3. Check DTC. If DTC is displayed, erase it, refer to EC-67, "
HOW TO ERASE EMISSION-RELATED DIAG-
NOSTIC INFORMATION" .
>> GO TO 12.
12. FINAL CHECK
When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again,
and then make sure that the malfunction have been repaired securely.
When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure
that the symptom is not detected.
OK or NG
NG (DTC*1 is detected)>>GO TO 10.
NG (Symptom remains)>>GO TO 6.
OK >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*
1 in ECM
and TCM (Transmission Control Module). (Refer to EC-67, "
HOW TO ERASE EMISSION-
RELATED DIAGNOSTIC INFORMATION" and AT- 4 1 , "HOW TO ERASE DTC" .)
2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-
64, "Driving Pattern" .
3. INSPECTION END
*1: Include 1st trip DTC.
*2: Include 1st trip freeze frame data.
DIAGNOSTIC WORKSHEET
Description
There are many operating conditions that lead to the malfunction of
engine components. A good grasp of such conditions can make trou-
bleshooting faster and more accurate.
In general, each customer feels differently about a incident. It is
important to fully understand the symptoms or conditions for a cus-
tomer complaint.
Utilize a diagnostic worksheet like the one on the next page in order
to organize all the information for troubleshooting.
Some conditions may cause the MIL to come on steady or blink and
DTC to be detected. Examples:
Vehicle ran out of fuel, which caused the engine to misfire.
Fuel filler cap was left off or incorrectly screwed on, allowing fuel
to evaporate into the atmosphere.
SEF907L
EC-94
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
DTC Inspection Priority ChartNBS003LY
If some DTCs are displayed at the same time, perform inspections one by one based on the following priority
chart.
NOTE:
If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC
U1000, U1001. Refer to EC-156, "
DTC U1000, U1001 CAN COMMUNICATION LINE" .
If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010.
Refer to EC-159, "
DTC U1010 CAN COMMUNICATION" .
Priority Detected items (DTC)
1
U1000 U1001 CAN communication line
U1010 CAN communication
P0101 P0102 P0103 Mass air flow sensor
P0112 P0113 P0127 Intake air temperature sensor
P0117 P0118 P0125 Engine coolant temperature sensor
P0128 Thermostat function
P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
P0181 P0182 P0183 Fuel tank temperature sensor
P0327 P0328 Knock sensor
P0335 Crankshaft position sensor (POS)
P0340 P0345 Camshaft position sensor (PHASE)
P0460 P0461 P0462 P0463 Fuel level sensor
P0500 Vehicle speed sensor
P0605 ECM
P0643 Sensor power supply
P0700 TCM
P0705 Park/Neutral position (PNP) switch
P0850 Park/Neutral position (PNP) switch
P1610 - P1615 NATS
P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor
TROUBLE DIAGNOSIS EC-95
[VQ35DE]
C
D E
F
G H
I
J
K L
M A
EC
Revision: 2006 December 2006 FX35/FX45
*: Models with ICC. 2
P0031 P0032 P0051 P0052 Air fuel ratio (A/F) sensor 1 heater
P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater
P0075 P0081 Intake valve timing control solenoid valve
P0130 P0131 P0132 P0133 P0150 P0151 P0152 P0153 P2A00 P2A03 Air fuel ratio (A/F) sensor 1
P0137 P0138 P0139 P0157 P0158 P0159 Heated oxygen sensor 2
P0441 EVAP control system purge flow monitoring
P0443 P0444 P0445 EVAP canister purge volume control solenoid valve
P0447 P0448 EVAP canister vent control valve
P0451 P0452 P0453 EVAP control system pressure sensor
P0550 Power steering pressure sensor
P0603 ECM power supply
P0710 P0717 P0720 P0740 P0744 P0745 P1730 P1752 P1754 P1757 P1759 P1762 P1764 P1767 P1769 P1772
P1774 A/T related sensors, solenoid valves and switches
P1217 Engine over temperature (OVERHEAT)
P1805 Brake switch
P2100 P2103 P2118 Electric throttle control actuator
P2101 Electric throttle control function
3
P0011 P0021 Intake valve timing control
P0171 P0172 P0174 P0175 Fuel injection system function
P0300 - P0306 Misfire
P0420 P0430 Three way catalyst function
P0442 EVAP control system (SMALL LEAK)
P0455 EVAP control system (GROSS LEAK)
P0456 EVAP control system (VERY SMALL LEAK)
P0506 P0507 Idle speed control system
P1148 P1168 Closed loop control
P1211 TCS control unit
P1212 TCS communication line
P1564 ICC steering switch/ASCD steering switch
P1568 ICC command valve*
P1572 ICC brake switch/ASCD brake switch
P1574 ICC vehicle speed sensor/ASCD vehicle speed sensor
P1715 Turbine revolution sensor
P2119 Electric throttle control actuator
Priority Detected items (DTC)
EC-96
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2006 December 2006 FX35/FX45
Fail-Safe ChartNBS003LZ
When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.
When there is an open circuit on MIL circuit, the ECM cannot warn the driver by MIL lighting up when
there is malfunction on engine control system.
Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected
as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by
means of operating fail-safe function.
The fail-safe function also operates when above diagnoses except MIL circuit are detected and demands
the driver to repair the malfunction.
DTC No. Detected items Engine operating condition in fail-safe mode
P0102
P0103 Mass air flow sensor circuit Engine speed will not rise more than 2,400 rpm due to the fuel cut.
P0117
P0118 Engine coolant tempera-
ture sensor circuit Engine coolant temperature will be determined by ECM based on the time after turning
ignition switch ON or START.
CONSULT-II displays the engine coolant temperature decided by ECM.
Condition Engine coolant temperature decided
(CONSULT-II display)
Just as ignition switch is turned
ON or START 40
°C (104 °F)
More than approx. 4 minutes after
ignition ON or START 80
°C (176 °F)
Except as shown above 40 - 80
°C (104 - 176 °F)
(Depends on the time)
When the fail-safe system for engine coolant temperature sensor is activated, the cooling
fan operates while engine is running.
P0122
P0123
P0222
P0223
P2135 Throttle position sensor The ECM controls the electric throttle control actuator in regulating the throttle opening in
order for the idle position to be within +10 degrees.
The ECM regulates the opening speed of the throttle valve to be slower than the normal
condition.
So, the acceleration will be poor.
P0643 Sensor power supply ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.
P2100
P2103 Throttle control motor relay ECM stops the electric throttle control actuator control, throttle valve is maintained at a
fixed opening (approx. 5 degrees) by the return spring.
P2101 Electric throttle control function ECM stops the electric throttle control actuator control, throttle valve is maintained at a
fixed opening (approx. 5 degrees) by the return spring.
P2118 Throttle control motor ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.
P2119 Electric throttle control actuator (When electric throttle control actuator does not function properly due to the return spring
malfunction:)
ECM controls the electric throttle actuator by regulating the throttle opening around the
idle position. The engine speed will not rise more than 2,000 rpm.
(When throttle valve opening angle in fail-safe mode is not in specified range:)
ECM controls the electric throttle control actuator by regulating the throttle opening to 20
degrees or less.
(When ECM detects the throttle valve is stuck open:)
While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops,
the engine stalls.
The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or
more.
P2122
P2123
P2127
P2128
P2138 Accelerator pedal position
sensor The ECM controls the electric throttle control actuator in regulating the throttle opening in
order for the idle position to be within +10 degrees.
The ECM regulates the opening speed of the throttle valve to be slower than the normal
condition.
So, the acceleration will be poor.
Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut