EC-220
[QR (WITH EURO-OBD)]
DTC P0171 FUEL INJECTION SYSTEM FUNCTION
7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
8. Crank engine while depressing accelerator pedal. If engine starts, go to EC-222, "
Diagnostic Procedure" .
If engine does not start, check exhaust and intake air leak visually.
WITH GST
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Disconnect mass air flow sensor harness connector.
4. Restart engine and let idle for at least 5 seconds.
5. Stop engine and reconnect mass air flow sensor harness con-
nector.
6. Select Service $03 with GST. Make sure DTC P0102 is
detected.
7. Select Service $04 with GST and erase the DTC P0102.
8. Start engine again and let it idle for at least 10 minutes.
9. Select Service $07 with GST. The 1st trip DTC P0171 should be
detected at this stage, if a malfunction exists. If so, go to EC-
222, "Diagnostic Procedure" .
NOTE:
If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 min-
utes. Refer to the table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
11. Crank engine while depressing accelerator pedal. If engine starts, go to EC-222, "
Diagnostic Procedure" .
If engine does not start, check exhaust and intake air leak visually.
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70 °C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).
PBIB0495E
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70 °C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).
DTC P0172 FUEL INJECTION SYSTEM FUNCTION
EC-225
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
DTC P0172 FUEL INJECTION SYSTEM FUNCTIONPFP:16600
On Board Diagnosis LogicEBS010P7
With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the
theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The
ECM calculates the necessary compensation to correct the offset between the actual and the theoretical
ratios.
In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the
ECM judges the condition as the fuel injection system malfunction and lights up the MI (2 trip detection logic).
DTC Confirmation ProcedureEBS010P8
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
WITH CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Turn ignition switch ON and select “SELF-LEARNING CONT” in “WORK SUPPORT” mode with CON-
SULT-II.
4. Clear the self-learning control coefficient by touching “CLEAR”.
5. Select “DATA MONITOR” mode with CONSULT-II.
6. Start engine again and let it idle for at least 10 minutes.
The 1st trip DTC P0172 should be detected at this stage, if a
malfunction exists. If so, go to EC-228, "
Diagnostic Procedure" .
NOTE:
If 1st trip DTC is not detected during above procedure, perform-
ing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to
(1st trip) Freeze Frame Data for 10 minutes. Refer to the table
below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
Sensor Input Signal to ECM ECM function Actuator
Heated oxygen sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)Fuel injection control Fuel injector
DTC No.Trouble diagnosis
nameDTC detecting condition Possible cause
P0172
0172Fuel injection system
too rich
Fuel injection system does not operate properly.
The amount of mixture ratio compensation is too
large.
(The mixture ratio is too rich.)
Heated oxygen sensor 1
Fuel injector
Exhaust gas leaks
Incorrect fuel pressure
Mass air flow sensor
SEF215Z
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70 °C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).
EC-226
[QR (WITH EURO-OBD)]
DTC P0172 FUEL INJECTION SYSTEM FUNCTION
8. Crank engine while depressing accelerator pedal.
If engine starts, go to EC-228, "
Diagnostic Procedure" . If engine does not start, remove ignition plugs and
check for fouling, etc.
WITH GST
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Disconnect mass air flow sensor harness connector.
4. Restart engine and let idle for at least 5 seconds.
5. Stop engine and reconnect mass air flow sensor harness con-
nector.
6. Select Service $03 with GST. Make sure DTC P0102 is
detected.
7. Select Service $04 with GST and erase the DTC P0102.
8. Start engine again and let it idle for at least 10 minutes.
9. Select Service $07 with GST. The 1st trip DTC P0172 should be
detected at this stage, if a malfunction exists. If so, go to EC-
228, "Diagnostic Procedure" .
NOTE:
If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.
a. Turn ignition switch OFF and wait at least 10 seconds.
b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 min-
utes. Refer to the table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
ditions should be satisfied at the same time.
10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
11. Crank engine while depressing accelerator pedal.
If engine starts, go to EC-228, "
Diagnostic Procedure" . If engine does not start, remove ignition plugs and
check for fouling, etc.
PBIB0495E
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70 °C (158 °F),
T should be lower than 70 °C (158 °F).
When the freeze frame data shows higher than or equal to 70 °C (158 °F),
T should be higher than or equal to 70 °C (158 °F).
EC-240
[QR (WITH EURO-OBD)]
DTC P0300 - P0304 MULTIPLE CYLINDER MISFIRE, NO. 1 - 4 CYLINDER MIS-
FIRE
WITH CONSULT-II
1. Turn ignition switch ON, and select “DATA MONITOR” mode
with CONSULT-II.
2. Start engine and warm it up to normal operating temperature.
3. Turn ignition switch OFF and wait at least 10 seconds.
4. Restart engine and let it idle for about 15 minutes.
5. If 1st trip DTC is detected, go to EC-240, "
Diagnostic Procedure"
.
NOTE:
If 1st trip DTC is not detected during above procedure, performing
the following procedure is advised.
1. Turn ignition switch OFF and wait at least 10 seconds.
2. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain
time. Refer to table below.
Hold the accelerator pedal as steady as possible.
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following con-
dition should be satisfied at the same time:
The time to driving varies according to the engine speed in the freeze frame data.
Refer to the following table.
WITH GST
Follow the procedure “WITH CONSULT-II” above.
Diagnostic ProcedureEBS010PL
1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE
1. Start engine and run it at idle speed.
2. Listen for the sound of the intake air leak.
3. Check PCV hose connection.
OK or NG
OK >> GO TO 2.
NG >> Repair or replace.
2. CHECK FOR EXHAUST SYSTEM CLOGGING
Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace.
PBIB0164E
Engine speed Engine speed in the freeze frame data ± 400 rpm
Vehicle speed Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)
Engine coolant temperature
(T) conditionWhen the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F)
When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or
equal to 70°C (158°F)
Engine speed Time
Around 1,000 rpm Approximately 10 minutes
Around 2,000 rpm Approximately 5 minutes
More than 3,000 rpm Approximately 3.5 minutes
DTC P0444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
EC-269
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
DTC P0444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
PFP:14920
DescriptionEBS010QC
SYSTEM DESCRIPTION
*1: ECM determines the start signal status by the signals of engine speed and battery voltage.
*2: This signal is sent to the ECM through CAN communication line.
This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass pas-
sage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP
canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the
ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is
determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor
from the EVAP canister is regulated as the air flow changes.
COMPONENT DESCRIPTION
The EVAP canister purge volume control solenoid valve uses a ON/
OFF duty to control the flow rate of fuel vapor from the EVAP canis-
ter. The EVAP canister purge volume control solenoid valve is
moved by ON/OFF pulses from the ECM. The longer the ON pulse,
the greater the amount of fuel vapor that will flow through the valve.
CONSULT-II Reference Value in Data Monitor ModeEBS010QD
Specification data are reference values.
On Board Diagnosis LogicEBS010QE
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
1
EVAP canister
purge flow controlEVAP canister purge volume
control solenoid valve Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*1
Throttle position sensor Throttle position
Accelerator pedal position sensor Closed throttle position
Heated oxygen sensor 1Density of oxygen in exhaust gas
(Mixture ratio feedback signal)
Wheel sensor*
2Vehicle speed
SEF337U
MONITOR ITEM CONDITION SPECIFICATION
PURG VOL C/V
Engine: After warming up
Shift lever: P or N (A/T), Neutral
(M/T)
Air conditioner switch: OFF
No loadIdle 0%
2,000 rpm 20 - 30%
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P0444
0444EVAP canister purge volume
control solenoid valve circuit
openAn excessively low voltage signal is sent
to ECM through the valve
Harness or connectors
(The solenoid valve circuit is open or
shorted.)
EVAP canister purge volume control
solenoid valve
EC-352
[QR (WITH EURO-OBD)]
DTC P1217 ENGINE OVER TEMPERATURE
DTC P1217 ENGINE OVER TEMPERATUREPFP:00000
System DescriptionEBS010T9
COOLING FAN CONTROL
*1: This signal is sent to ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant
pressure, and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].
OPERATION
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
2
Cooling fan
controlCooling fan relay Engine coolant temperature sensor Engine coolant temperature
Battery
Battery voltage*2
Air conditioner switch Air conditioner ON signal
Refrigerant pressure sensor Refrigerant pressure
Wheel sensor*
1Vehicle speed
PBIB1987E
DTC P1217 ENGINE OVER TEMPERATURE
EC-353
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
CONSULT-II Reference Value in Data Monitor ModeEBS010TA
Specification data are reference values.
On Board Diagnosis LogicEBS010TB
If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will
rise. When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction
is indicated.
This self-diagnosis has the one trip detection logic.
CAUTION:
When a malfunction is indicated, be sure to replace the coolant. Refer to CO-9, "
Changing Engine
Coolant" . Also, replace the engine oil. Refer to LU-8, "Changing Engine Oil" .
1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to
use coolant with the proper mixture ratio. Refer to MA-19, "
Engine Coolant Mixture Ratio" .
2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.
Overall Function CheckEBS010TC
Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be con-
firmed.
WARNING:
Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pres-
sure fluid escaping from the radiator.
Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up
pressure to escape. Then turn the cap all the way off.
MONITOR ITEM CONDITION SPECIFICATION
AIR COND SIG
Engine: After warming up, idle
the engineAir conditioner switch: OFF OFF
Air conditioner switch: ON
(Compressor operates.)ON
COOLING FAN
Engine: After warming up, idle
the engine
Air conditioner switch: OFFEngine coolant temperature is 94°C
(201°F) or lessOFF
Engine coolant temperature is
between 95°C (203°F) and 99°C
(210°F) or moreLOW
Engine coolant temperature is 100°C
(212°F) or moreHIGH
DTC No. Trouble diagnosis name DTC detecting condition Possible cause
P1217
1217Engine over tempera-
ture (Overheat)
Cooling fan does not operate properly (Over-
heat).
Cooling fan system does not operate prop-
erly (Overheat).
Engine coolant was not added to the system
using the proper filling method.
Engine coolant is not within the specified
range.
Harness or connectors
(The cooling fan circuit is open or
shorted.)
Cooling fan
Cooling fan relays
Radiator hose
Radiator
Radiator cap
Water pump
Thermostat
For more information, refer to EC-366,
"Main 12 Causes of Overheating" .
VIAS
EC-457
[QR (WITH EURO-OBD)]
C
D
E
F
G
H
I
J
K
L
MA
EC
VIASPFP:14956
DescriptionEBS011HT
SYSTEM DESCRIPTION
*: The ECM determines the start signal status by the signals of engine speed and battery voltage.
When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the
effective suction port length is equivalent to the total length of the intake manifold collector's suction port
including the intake valve. This long suction port provides increased air intake which results in improved suc-
tion efficiency and higher torque generation.
The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the
signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power
valve actuator and therefore opens the power valve to two suction passages together in the collector.
Under this condition, the effective port length is equivalent to the length of the suction port provided indepen-
dently for each cylinder. This shortened port length results in enhanced engine output with reduced suction
resistance under high speeds.
COMPONENT DESCRIPTION
Power Valve
The power valve is installed in intake manifold collector and used to
control the suction passage of the variable induction air control sys-
tem. It is set in the fully closed or fully opened position by the power
valve actuator operated by the vacuum stored in the surge tank. The
vacuum in the surge tank is controlled by the VIAS control solenoid
valve.
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Camshaft position sensor (PHASE)Engine speed*
VIAS control VIAS control solenoid valve Mass air flow sensor Amount of intake air
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Battery Battery voltage*
Engine coolant temperature sensor Engine coolant temperature
PBIB0843E
PBIB0946E