DTC P1273, P1283 A/F SENSOR 1
EC-445
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
DTC P1273, P1283 A/F SENSOR 1PFP:22693
Component DescriptionUBS00H9T
The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is the combination of a
Nernst concentration cell (sensor cell) with an oxygen-pump cell,
which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 <
< air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the A/F sensor 1 is able to
indicate air/fuel ratio by this pumping of current. In addition, a heater
is integrated in the sensor to ensure the required operating tempera-
ture of 700 - 800°C (1,292 - 1,472°F).
CONSULT-II Reference Value in Data Monitor ModeUBS00H9U
Specification data are reference values.
On Board Diagnosis LogicUBS00H9V
To judge the malfunction, the A/F signal computed by ECM from the A/F sensor 1 signal is monitored not to be
shifted LEAN side or RICH side.
DTC Confirmation ProcedureUBS00H9W
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
TESTING CONDITION:
Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
WITH CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Turn ignition switch ON and select “SELF-LEARNING CONT” in “WORK SUPPORT” mode with CON-
SULT-II.
SEF 5 79 Z
SEF 5 80 Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming upMaintaining engine speed at
2,000 rpmFluctuates around 1.5V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P1273
1273
(Bank 1)
Air fuel ratio (A/F) sensor 1
lean shift monitoring
The output voltage computed by ECM from the
A/F sensor 1 signal is shifted to the lean side
for a specified period.
Air fuel ratio (A/F) sensor 1
Air fuel ratio (A/F) sensor 1 heater
Fuel pressure
Injector
Intake air leaks P1283
1283
(Bank 2)
EC-454Revision: August 2007
DTC P1274, P1284 A/F SENSOR 1
2004 QX56
DTC P1274, P1284 A/F SENSOR 1PFP:22693
Component DescriptionUBS00HA0
The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is the combination of a
Nernst concentration cell (sensor cell) with an oxygen-pump cell,
which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 <
< air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the A/F sensor 1 is able to
indicate air/fuel ratio by this pumping of current. In addition, a heater
is integrated in the sensor to ensure the required operating tempera-
ture of 700 - 800°C (1,292 - 1,472°F).
CONSULT-II Reference Value in Data Monitor ModeUBS00HA1
Specification data are reference values.
On Board Diagnosis LogicUBS00HA2
To judge the malfunction, the A/F signal computed by ECM from the A/F sensor 1 signal is monitored not to be
shifted to the LEAN side or RICH side.
DTC Confirmation ProcedureUBS00HA3
NOTE:
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at
least 10 seconds before conducting the next test.
TESTING CONDITION:
Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
WITH CONSULT-II
1. Start engine and warm it up to normal operating temperature.
2. Turn ignition switch OFF and wait at least 10 seconds.
3. Turn ignition switch ON and select “SELF-LEARNING CONT” in “WORK SUPPORT” mode with CON-
SULT-II.
SEF 5 79 Z
SEF 5 80 Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming upMaintaining engine speed at
2,000 rpmFluctuates around 1.5V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P1274
1274
(Bank 1)
Air fuel ratio (A/F) sensor 1
rich shift monitoring
The A/F signal computed by ECM from the
A/F sensor 1 signal is shifted to the rich side
for a specified period.
Air fuel ratio (A/F) sensor 1
Air fuel ratio (A/F) sensor 1 heater
Fuel pressure
Injector P1284
1244
(Bank 2)
EC-472Revision: August 2007
DTC P1278, P1288 A/F SENSOR 1
2004 QX56
DTC P1278, P1288 A/F SENSOR 1PFP:22693
Component DescriptionUBS00HAF
The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is the combination of a
Nernst concentration cell (sensor cell) with an oxygen-pump cell,
which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 <
< air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the A/F sensor 1 is able to
indicate air/fuel ratio by this pumping of current. In addition, a heater
is integrated in the sensor to ensure the required operating tempera-
ture of 700 - 800°C (1,292 - 1,472°F).
CONSULT-II Reference Value in Data Monitor ModeUBS00HAG
Specification data are reference values.
On Board Diagnosis LogicUBS00HAH
To judge the malfunction of A/F sensor 1, this diagnosis measures response time of the A/F signal computed
by ECM from the A/F sensor 1 signal. The time is compensated by engine operating (speed and load), fuel
feedback control constant, and the A/F sensor 1 temperature index. Judgment is based on whether the com-
pensated time (the A/F signal cycling time index) is inordinately long or not.
SEF 5 79 Z
SEF 5 80 Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming upMaintaining engine speed at
2,000 rpm Fluctuates around 1.5V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P1278
1278
(Bank 1)
Air fuel ratio (A/F) sensor 1
circuit slow response
The response (from RICH to LEAN) of the A/F
signal computed by ECM from A/F sensor 1
signal takes more than the specified time.
Harness or connectors
(The A/F sensor 1 circuit is open or
shorted.)
Air fuel ratio (A/F) sensor 1
Air fuel ratio (A/F) sensor 1 heater
Fuel pressure
Injector
Intake air leaks
Exhaust gas leaks
PCV
Mass air flow sensor P1288
1288
(Bank 2)
EC-474Revision: August 2007
DTC P1278, P1288 A/F SENSOR 1
2004 QX56
Intake air leaks
Exhaust gas leaks
Incorrect fuel pressure
Lack of fuel
Injectors
Incorrect PCV hose connection
PCV valve
Mass air flow sensor
4. Turn ignition switch OFF and wait at least 10 seconds.
5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1minute under no load.
6. Let engine idle for 1 minute.
7. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
8. Fully release accelerator pedal and then let engine idle for about 1 minute.
9. Select “MODE 7” with GST.
If the 1st trip DTC is displayed, go to EC-478, "
Diagnostic Procedure" .
EC-484Revision: August 2007
DTC P1279, P1289 A/F SENSOR 1
2004 QX56
DTC P1279, P1289 A/F SENSOR 1PFP:22693
Component DescriptionUBS00HAM
The air fuel ratio (A/F) sensor 1 is a planar dual-cell limit current sen-
sor. The sensor element of the A/F sensor 1 is the combination of a
Nernst concentration cell (sensor cell) with an oxygen-pump cell,
which transports ions. It has a heater in the element.
The sensor is capable of precise measurement = 1, but also in the
lean and rich range. Together with its control electronics, the sensor
outputs a clear, continuous signal throughout a wide range (0.7 <
< air).
The exhaust gas components diffuse through the diffusion gap at the
electrode of the oxygen pump and Nernst concentration cell, where
they are brought to thermodynamic balance.
An electronic circuit controls the pump current through the oxygen-
pump cell so that the composition of the exhaust gas in the diffusion
gap remains constant at = 1. Therefore, the A/F sensor 1 is able to
indicate air/fuel ratio by this pumping of current. In addition, a heater
is integrated in the sensor to ensure the required operating tempera-
ture of 700 - 800°C (1,292 - 1,472°F).
CONSULT-II Reference Value in Data Monitor ModeUBS00HAN
Specification data are reference values.
On Board Diagnosis LogicUBS00HAO
To judge the malfunction of A/F sensor 1, this diagnosis measures response time of the A/F signal computed
by ECM from the air fuel ration A/F sensor 1 signal. The time is compensated by engine operating (speed and
load), fuel feedback control constant, and the A/F sensor 1 temperature index. Judgment is based on whether
the compensated time (the A/F signal cycling time index) is inordinately long or not.
SEF 5 79 Z
SEF 5 80 Z
MONITOR ITEM CONDITION SPECIFICATION
A/F SEN1 (B1)
A/F SEN1 (B2)
Engine: After warming upMaintaining engine speed at
2,000 rpmFluctuates around 1.5V
DTC No. Trouble diagnosis name DTC detecting condition Possible Cause
P1279
1279
(Bank 1)
Air fuel ratio (A/F) sensor 1
circuit slow response
The response (from LEAN to RICH) of the A/F
signal computed by ECM from A/F sensor 1
signal takes more than the specified time.
Harness or connectors
(The A/F sensor 1 circuit is open or
shorted.)
Air fuel ratio (A/F) sensor 1
Air fuel ratio (A/F) sensor 1 heater
Fuel pressure
Injector
Intake air leaks
Exhaust gas leaks
PCV
Mass air flow sensor P1289
1289
(Bank 2)
EC-486Revision: August 2007
DTC P1279, P1289 A/F SENSOR 1
2004 QX56
Intake air leaks
Exhaust gas leaks
Incorrect fuel pressure
Lack of fuel
Injectors
Incorrect PCV hose connection
PCV valve
Mass air flow sensor
4. Turn ignition switch OFF and wait at least 10 seconds.
5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1minute under no load.
6. Let engine idle for 1 minute.
7. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
8. Fully release accelerator pedal and then let engine idle for about 1 minute.
9. Select “MODE 7” with GST.
If the 1st trip DTC is displayed, go to EC-490, "
Diagnostic Procedure" .
FUEL PUMP CIRCUIT
EC-603
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: August 20072004 QX56
Specification data are reference values and are measured between each terminal and ground.
CAUTION:
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in dam-
age to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.
Diagnostic ProcedureUBS00HDE
1. CHECK OVERALL FUNCTION
1. Turn ignition switch ON.
2. Pinch fuel feed hose with two fingers.
Fuel pressure pulsation should be felt on the fuel feed hose
for 1 second after ignition switch is turned ON.
OK or NG
OK >>INSPECTION END
NG >> GO TO 2.
2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I
1. Turn ignition switch OFF.
2. Disconnect ECM harness connector.
3. Turn ignition switch ON.
4. Check voltage between ECM terminal 113 and ground with
CONSULT-II or tester.
OK or NG
OK >> GO TO 5.
NG >> GO TO 3.
TER-
MINAL
NO.WIRE
COLORITEM CONDITION DATA (DC Voltage)
113 GR Fuel pump relay[Ignition switch: ON]
For 1 second after turning ignition switch ON
[Engine is running]0 - 1.5V
[Ignition switch: ON]
More than 1 second after turning ignition
switch ON.BATTERY VOLTAGE
(11 - 14V)
BBIA0357E
Voltage: Battery voltage
PBIB11 87 E
EC-636Revision: August 2007
EVAPORATIVE EMISSION SYSTEM
2004 QX56
Component InspectionUBS00HDZ
EVAP CANISTER
Check EVAP canister as follows:
1. Block port B .
2. Blow air into port A and check that it flows freely out of port C .
3. Release blocked port B .
4. Apply vacuum pressure to port B and check that vacuum pres-
sure exists at the ports A and C .
5. Block port A and B .
6. Apply pressure to port C and check that there is no leakage.
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)
1. Wipe clean valve housing.
2. Check valve opening pressure and vacuum.
3. If out of specification, replace fuel filler cap as an assembly.
CAUTION:
Use only a genuine fuel filler cap as a replacement. If an incor-
rect fuel filler cap is used, the MIL may come on.
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE
Refer to EC-285 .
FUEL TANK TEMPERATURE SENSOR
Refer to EC-225 .
EVAP CANISTER VENT CONTROL VALVE
Refer to EC-292 .
EVAP CONTROL SYSTEM PRESSURE SENSOR
Refer to EC-299 .
BBIA0352E
SEF 4 45 Y
Pressure:
15.3 - 20.0 kPa (0.156 - 0.204 kg/cm2 , 2.22
- 2.90 psi)
Vac uu m :
−6.0 to −3.3 kPa (−0.061 to −0.034 kg/cm
2
, −0.87 to −0.48 psi)
SEF 9 43 S