ENGINE CONTROL SYSTEM
EC-31
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
System ChartABS006K6
*1: This sensor is not used to control the engine system. This is used only for the on board diagnosis.
*2: This sensor is not used to control the engine system under normal conditions.
*3: This input signal is sent to the ECM through CAN communication line.
*4: This output signal is sent from the ECM through CAN communication line.Input (Sensor) ECM Function Output (Actuator)
Camshaft position sensor (PHASE)
Crankshaft position sensor (POS)
Mass air flow sensor
Engine coolant temperature sensor
Heated oxygen sensor 1
Throttle position sensor
Accelerator pedal position sensor
Park/neutral position (PNP) switch
Intake air temperature sensor
Power steering pressure sensor
Ignition switch
Battery voltage
Knock sensor
Refrigerant pressure sensor
Stop lamp switch
ICC steering switch
ICC brake switch
ASCD steering switch
ASCD brake switch
Fuel level sensor*1 *3
EVAP control system pressure sensor
Fuel tank temperature sensor*1
Heated oxygen sensor 2*2
TCM (Transmission control module)*3
ABS actuator and electric unit (control unit)*3
ICC unit*3
Air conditioner switch*3
Wheel sensor*3
Electrical load signal*3
Fuel injection & mixture ratio control Fuel injector
Electronic ignition system Power transistor
Fuel pump control Fuel pump relay
ICC vehicle speed control Electric throttle control actuator
ASCD vehicle speed control Electric throttle control actuator
On board diagnostic system
MIL (On the instrument panel)*
4
Heated oxygen sensor 1 heater control Heated oxygen sensor 1 heater
Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater
EVAP canister purge flow controlEVAP canister purge volume control
solenoid valve
Air conditioning cut control
Air conditioner relay*
4
Cooling fan control
Cooling fan relay*4
ON BOARD DIAGNOSIS for EVAP system EVAP canister vent control valve
EC-32
[VQ35DE]
ENGINE CONTROL SYSTEM
Revision: 2004 November 2004 FX35/FX45
Multiport Fuel Injection (MFI) SystemABS006K7
INPUT/OUTPUT SIGNAL CHART
*1: This sensor is not used to control the engine system under normal conditions.
*2: This signal is sent to the ECM through CAN communication line.
*3: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of
time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the
ECM memory. The program value is preset by engine operating conditions. These conditions are determined
by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air
flow sensor.
VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION
In addition, the amount of fuel injected is compensated to improve engine performance under various operat-
ing conditions as listed below.
During warm-up
When starting the engine
During acceleration
Hot-engine operation
When selector lever is changed from N to D
High-load, high-speed operation
During deceleration
During high engine speed operation
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
3
Piston position
Fuel injection
& mixture ratio
controlFuel injector Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Heated oxygen sensor 1 Density of oxygen in exhaust gas
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Park/neutral position (PNP) switch Gear position
Knock sensor Engine knocking condition
Battery
Battery voltage*
3
Power steering pressure sensor Power steering operation
Heated oxygen sensor 2*
1Density of oxygen in exhaust gas
Air conditioner switch*
2Air conditioner operation
Wheel sensor*
2Vehicle speed
EC-34
[VQ35DE]
ENGINE CONTROL SYSTEM
Revision: 2004 November 2004 FX35/FX45
FUEL INJECTION TIMING
Two types of systems are used.
Sequential Multiport Fuel Injection System
Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used
when the engine is running.
Simultaneous Multiport Fuel Injection System
Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of
the same width are simultaneously transmitted from the ECM.
The six injectors will then receive the signals two times for each engine cycle.
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.
FUEL SHUT-OFF
Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.
Electronic Ignition (EI) SystemABS006K8
INPUT/OUTPUT SIGNAL CHART
*1: This signal is sent to the ECM through CAN communication line.
*2: ECM determines the start signal status by the signals of engine speed and battery voltage.
SYSTEM DESCRIPTION
The ignition timing is controlled by the ECM to maintain the best air-
fuel ratio for every running condition of the engine. The ignition tim-
ing data is stored in the ECM. This data forms the map shown.
The ECM receives information such as the injection pulse width and
camshaft position sensor signal. Computing this information, ignition
signals are transmitted to the power transistor.
e.g., N: 1,800 rpm, Tp: 1.50 msec
A °BTDC
During the following conditions, the ignition timing is revised by the
ECM according to the other data stored in the ECM.
At starting
During warm-up
SEF179U
Sensor Input Signal to ECM ECM function Actuator
Crankshaft position sensor (POS)
Engine speed*
2
Piston position
Ignition timing
controlPower transistor Camshaft position sensor (PHASE)
Mass air flow sensor Amount of intake air
Engine coolant temperature sensor Engine coolant temperature
Throttle position sensor Throttle position
Accelerator pedal position sensor Accelerator pedal position
Knock sensor Engine knocking
Park/neutral position (PNP) switch Gear position
Battery
Battery voltage*
2
Wheel sensor*1Vehicle speed
SEF742M
EC-38
[VQ35DE]
BASIC SERVICE PROCEDURE
Revision: 2004 November 2004 FX35/FX45
2. Connect No. 1 ignition coil and No. 1 spark plug with suitable
high-tension wire as shown, and attach timing light clamp to this
wire.
3. Check ignition timing.
Idle Speed/Ignition Timing/Idle Mixture Ratio AdjustmentABS006KD
PREPARATION
1. Make sure that the following parts are in good order.
Battery
Ignition system
Engine oil and coolant levels
Fuses
ECM harness connector
Vacuum hoses
Air intake system
(Oil filler cap, oil level gauge, etc.)
Fuel pressure
Engine compression
Throttle valve
Evaporative emission system
2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio,
checks should be carried out while shift lever is in N position.
4. When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
5. Turn OFF headlamp, heater blower, rear window defogger.
PBIB1573E
SEF166Y
PBIB1602E
EC-58
[VQ35DE]
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Revision: 2004 November 2004 FX35/FX45
1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and
therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehi-
cle from being tested, for example during Inspection/Maintenance (I/M) tests.
When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame
data as specified in Work Flow procedure Step II, refer to EC-78, "
WORK FLOW" . Then perform DTC Confir-
mation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is dupli-
cated, the item requires repair.
How to Read DTC and 1st Trip DTC
DTC and 1st trip DTC can be read by the following methods.
With CONSULT-II
With GST
CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.
These DTCs are prescribed by SAE J2012.
(CONSULT-II also displays the malfunctioning component or system.)
No Tools
The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC.
Example: 0340, 1148, 1706, etc.
These DTCs are controlled by NISSAN.
1st trip DTC No. is the same as DTC No.
Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indi-
cate whether the malfunction is still occurring or has occurred in the past and has returned to nor-
mal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if
available) is recommended.
A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunc-
tion is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times
the vehicle was driven after the last detection of a DTC.
If the DTC is being detected currently, the time data will be [0].
If a 1st trip DTC is stored in the ECM, the time data will be [1t].
FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA
The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant tem-
perature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake
air temperature at the moment a malfunction is detected.
Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.
The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or
GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For
details, see EC-113, "
Freeze Frame Data and 1st Trip Freeze Frame Data" .
Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the
ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority
for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once
freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no
longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the fol-
lowing priorities to update the data.
PBIB0911E
TROUBLE DIAGNOSIS
EC-81
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
Priority Detected items (DTC)
1
U1000 U1001 CAN communication line
P0101 P0102 P0103 Mass air flow sensor
P0112 P0113 P0127 Intake air temperature sensor
P0117 P0118 P0125 Engine coolant temperature sensor
P0128 Thermostat function
P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
P0181 P0182 P0183 Fuel tank temperature sensor
P0327 P0328 Knock sensor
P0335 Crankshaft position sensor (POS)
P0340 P0345 Camshaft position sensor (PHASE)
P0460 P0461 P0462 P0463 Fuel level sensor
P0500 Vehicle speed sensor
P0605 ECM
P0705 Park/Neutral position (PNP) switch
P1229 Sensor power supply
P1610 - P1615 NATS
P1706 Park/Neutral position (PNP) switch
P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor
2
P0031 P0032 P0051 P0052 Heated oxygen sensor 1 heater
P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater
P0132 P0133 P0134 P0152 P0153 P0154 P1143 P1144 P1163 P1164 Heated oxygen sensor 1
P0138 P0139 P0158 P0159 P1146 P1147 P1166 P1167 Heated oxygen sensor 2
P0441 EVAP control system purge flow monitoring
P0444 P0445 P1444 EVAP canister purge volume control solenoid valve
P0447 P1446 EVAP canister vent control valve
P0451 P0452 P0453 EVAP control system pressure sensor
P0550 Power steering pressure sensor
P0710 P0720 P0725 P0740 P0744 P0745 P1705 P1716 P1730 P1752 P1754 P1757 P1759 P1762 P1764 P1767
P1769 P1772 P1774 A/T related sensors, solenoid valves and switches
P1065 ECM power supply
P 1111 P 1136 Intake valve timing control solenoid valve
P1122 Electric throttle control function
P1124 P1126 P1128 Electric throttle control actuator
P1217 Engine over temperature (OVERHEAT)
P1805 Brake switch
3
P0011 P0021 Intake valve timing control
P0171 P0172 P0174 P0175 Fuel injection system function
P0300 - P0306 Misfire
P0420 P0430 Three way catalyst function
P0442 P0455 P0456 EVAP control system
P0506 P0507 Idle speed control system
P1121 Electric throttle control actuator
P1148 P1168 Closed loop control
P1211 TCS control unit
P1212 TCS communication line
P1564 ICC steering switch/ASCD steering switch
P1568 ICC command valve
P1572 ICC brake switch/ASCD brake switch
P1574 ICC vehicle speed sensor/ASCD vehicle speed sensor
TROUBLE DIAGNOSIS
EC-89
[VQ35DE]
C
D
E
F
G
H
I
J
K
L
MA
EC
Revision: 2004 November 2004 FX35/FX45
1 - 6: The numbers refer to the order of inspection.
(continued on next page)
SYSTEM — ENGINE MECHANICAL & OTHER
ECM 22333333333EC-401,
EC-404
Intake valve timing control solenoid valve cir-
cuit32 13223 3EC-408
PNP switch circuit 3 3 3 3 3EC-545
Refrigerant pressure sensor circuit 2 3 3 4EC-609
Electrical load signal circuit 3EC-614
Air conditioner circuit223333333 3 2AT C - 4 0
ABS actuator and electric unit (control unit) 4BRC-12
SYMPTOM
Reference
page
HARD/NO START/RESTART (EXCP. HA)
ENGINE STALL
HESITATION/SURGING/FLAT SPOT
SPARK KNOCK/DETONATION
LACK OF POWER/POOR ACCELERATION
HIGH IDLE/LOW IDLE
ROUGH IDLE/HUNTING
IDLING VIBRATION
SLOW/NO RETURN TO IDLE
OVERHEATS/WATER TEMPERATURE HIGH
EXCESSIVE FUEL CONSUMPTION
EXCESSIVE OIL CONSUMPTION
BATTERY DEAD (UNDER CHARGE)
Warranty symptom code AA AB AC AD AE AF AG AH AJ AK AL AM HA
SYMPTOM
Reference
page
HARD/NO START/RESTART (EXCP. HA)
ENGINE STALL
HESITATION/SURGING/FLAT SPOT
SPARK KNOCK/DETONATION
LACK OF POWER/POOR ACCELERATION
HIGH IDLE/LOW IDLE
ROUGH IDLE/HUNTING
IDLING VIBRATION
SLOW/NO RETURN TO IDLE
OVERHEATS/WATER TEMPERATURE HIGH
EXCESSIVE FUEL CONSUMPTION
EXCESSIVE OIL CONSUMPTION
BATTERY DEAD (UNDER CHARGE)
Warranty symptom code AA AB AC AD AE AF AG AH AJ AK AL AM HA
Fuel Fuel tank
5
5FL-10
Fuel piping 5 5 5 5 5 5EM-45
Vapor lock—
Valve deposit
5 555 55 5—
Poor fuel (Heavy weight gaso-
line, Low octane)—
EC-90
[VQ35DE]
TROUBLE DIAGNOSIS
Revision: 2004 November 2004 FX35/FX45
Air Air duct
55555 5EM-17
Air cleanerEM-17
Air leakage from air duct
(Mass air flow sensor — electric
throttle control actuator)
5555EM-17
Electric throttle control actuatorEM-19
Air leakage from intake manifold/
Collector/GasketEM-19,
EM-24
Cranking Battery
111111
11SC-4
Generator circuitSC-23
Starter circuit 3SC-10
Signal plate 6EM-120
PNP switch 4AT- 11 2
Engine Cylinder head
55555 55 5EM-98
Cylinder head gasket 4 3
Cylinder block
66666 66 64
EM-120
Piston
Piston ring
Connecting rod
Bearing
Crankshaft
Va l v e
mecha-
nismTiming chain
55555 55 5EM-63
CamshaftEM-82
Intake valve timing controlEM-63
Intake valve
3EM-98
Exhaust valve
Exhaust Exhaust manifold/Tube/Muffler/
Gasket
55555 55 5EM-26
, EX-
3Three way catalyst
Lubrica-
tionOil pan/Oil strainer/Oil pump/Oil
filter/Oil gallery/Oil cooler
55555 55 5EM-30
, LU-
17 , LU-10 ,
LU-14
Oil level (Low)/Filthy oilLU-7
SYMPTOM
Reference
page
HARD/NO START/RESTART (EXCP. HA)
ENGINE STALL
HESITATION/SURGING/FLAT SPOT
SPARK KNOCK/DETONATION
LACK OF POWER/POOR ACCELERATION
HIGH IDLE/LOW IDLE
ROUGH IDLE/HUNTING
IDLING VIBRATION
SLOW/NO RETURN TO IDLE
OVERHEATS/WATER TEMPERATURE HIGH
EXCESSIVE FUEL CONSUMPTION
EXCESSIVE OIL CONSUMPTION
BATTERY DEAD (UNDER CHARGE)
Warranty symptom code AA AB AC AD AE AF AG AH AJ AK AL AM HA