ENGINE CONTROLS 1F – 29
DAEWOO V–121 BL4
COMPONENT LOCATOR (1.8L DOHC)
Components on ECM Harness
11. Engine Control Module (ECM)
12. Data Link Connector (DLC)
13. Malfunction Indicator Lamp (MIL)
14. ECM/ABS Harness Ground
15. Fuse Panel (2)
ECM Controlled Devices
20. Exhaust Gas Recirculation (EGR) Valve
21. Fuel Injector (4)
22. Idle Air Control (IAC) Valve
23. Fuel Pump Relay
24. Cooling Fan Relays (High)
25. Cooling Fan Control Relay (A/C Only)
26. Electronic Ignition System Ignition Coil
27. Evaporative Emission (EVAP) Control Purge Sole-
noid
28. Main Relay
29. A/C Compressor Relay30. Cooling Fan Relays (Low)
Information Sensors
31. Manifold Absolute Pressure (MAP) Sensor
32. Front Heated Oxygen Sensor (HO2S1)
33. Throttle Position (TP) Sensor
34. Engine Coolant Temperature (ECT) Sensor
35. Intake Air Temperature (IAT) Sensor
36. Vehicle Speed Sensor (VSS)
38. Crankshaft Position (CKP) Sensor
39. Knock Sensor
40. Rear Heated Oxygen Sensor (HO2S2)
41. Camshaft Position (CMP) Sensor
Not PCM/ECM Connected
42. Evaporative Emission Canister (under vehicle, be-
hind right rear wheel)
43. Engine Oil Pressure Switch
44. Air Cleaner
ENGINE CONTROLS 1F – 79
DAEWOO V–121 BL4
IDLE AIR CONTROL SYSTEM CHECK (1.4L/1.6L DOHC)
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (0°C, 19°C). The char-
acteristics of the airflow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The main throttle idle actuator (MTIA) provides a voltagesignal that changes in relation to the throttle plate angle.
The signal voltage will vary from about nearly 5.0 V at idles
to about 0.2V to 0.4 V at wide–open throttle. The TPS is
one of the most important inputs used by the ECM for fuel
control and other functions such as idle, wide open
throttle, deceleration enleanment, and acceleration en-
richment.
Diagnostic Aids
If the idle is too high, stop the engine. Fully extend the main
throttle idle actuator (MTIA) with a IAC driver. Start the en-
gine. If the idle speed is above 800 rpm, locate and repair
the vacuum leak. Also, check for a binding throttle plate or
throttle linkage or an incorrect base idle setting.
1F – 82IENGINE CONTROLS
DAEWOO V–121 BL4
IDLE AIR CONTROL SYSTEM CHECK (1.8L DOHC)
Circuit Description
The Engine Control Module (ECM) controls the engine idle
speed with the Idle Air Control (IAC) valve. To increase the
idle speed, the ECM pulls the IAC pintle away from its seat,
allowing more air to pass by the throttle body. To decrease
the idle speed, it extends the IAC valve pintle toward its
seat, reducing bypass air flow. A scan tool will read the
ECM commands to the IAC valve in counts. The higher
counts indicate more air bypass (higher idle). The lower
counts indicate less air is allowed to bypass (lower idle).
Diagnostic Aids
If the idle is too high, stop the engine. Fully extend the Idle
Air Control (IAC) valve with a IAC driver. Start the engine.
If the idle speed is above 800 rpm, locate and repair the
vacuum leak. Also, check for a binding throttle plate or
throttle linkage or an incorrect base idle setting.
Test Description
The number(s) below refer to step(s) on the diagnostic
table.
2. The IAC valve is extended and retracted by the IAC
driver. IAC valve movement is verified by an engine
speed change. If no change in engine speed oc-
curs, the valve can be removed from the throttle
body and tested. Connect the IAC driver to the re-
moved IAC valve and turn the ignition ON. Do not
start the engine.5. This step checks the quality of the IAC valve move-
ment in Step 2. Fully extending the IAC valve may
cause an engine stall. This may be normal.
6. Steps 2 and 5 verify proper IAC valve operation.
This step checks the IAC circuit for a wiring or ECM
fault.
Idle Air Control Valve Reset Procedure
Whenever the battery cable or the Engine Control Module
(ECM) connector or the ECM fuse Ef11 is disconnected or
replaced, the following idle learn procedure must be per-
formed:
1. Turn the ignition ON for 5 seconds.
2. Turn the ignition OFF for 10 seconds.
3. Turn the ignition ON for 5 seconds.
4. Start the engine in park/neutral.
5. Allow the engine to run until the engine coolant is
above 185°F (85°C).
6. Turn the A/C ON for 10 seconds, if equipped.
7. Turn the A/C OFF for 10 seconds, if equipped.
8. If the vehicle is equipped with an automatic trans-
axle, apply the parking brake. While pressing the
brake pedal, place the transaxle in D (drive).
9. Turn the A/C ON for 10 seconds, if equipped.
10. Turn the A/C OFF for 10 seconds, if equipped.
11. Turn the ignition OFF. The idle learn procedure is
complete.
1F – 114IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE SENSOR LOW
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
(Case A)
S When the engine idling.
S No throttle position(TP) sensor MTIA fail conditions
present.
S Engine speed(rpm) is less than 2,500rpm.
S The MAP is less than 12.0 kPa.
(Case A)
S When the engine part load.
S The engine revolution speed is less than 4,000rpm.S No Throttle Position (TP) Sensor fails conditions
present.
S The Throttle Position (TP) angle greather than
30.0°.
S The MAP is less than 11.5 kPa.
S An open or low voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
ENGINE CONTROLS 1F – 117
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0108
MANIFOLD ABSOLUTE PRESSURE SENSOR HIGH
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
S When the engine idling.
S Engine speed is greater than 700rpm.
S No throttle position sensor (TPS) fail conditions
present.
S The MAP is greater than 95kPA.
S A high voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ±0.4volt.
If a DTC P0108 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure(MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.
ENGINE CONTROLS 1F – 131
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0122
THROTTLE POSITION SENSOR LOW VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 195). The charac-
teristics of the airflow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idles to
about 0.2V to 0.4 V at wide–open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S TPS voltage is less than 0.3V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will default to 20°C (68°F) for the first 60
seconds of the engine run time, and then 92 °C
(198 °F).
S The scan tool will not show the defaulted value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0122 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use the
scan tool DTC information data to determine the status of
the DTC. If the DTC occurs intermittently, using the DTC
P0121 diagnostic table may help isolate the problem.
1F – 134IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0123
THROTTLE POSITION SENSOR HIGH VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 195). The charac-
teristics of the airflow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idles to
about 0.2V to 0.4 V at wide–open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S TPS voltage is greater than 4.8V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will default to 20°C (68°F) for the first 60
seconds of the engine run time, and then 92 °C
(198 °F).
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0123 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use the
scan tool DTC information data to determine the status of
the DTC. If the DTC occurs intermittently, using the DTC
P0121 diagnostic table may help isolate the problem.
With the ignition ON and the throttle at closed position the
voltage should read between 0.20 V and 0.90V and in-
crease steadily to over 4.5V at WOT.
DTCs P0123 and P0113 stored at the same time could be
the result of an open sensor ground circuit.
1F – 160IENGINE CONTROLS
DAEWOO V–121 BL4
StepNo Yes Value(s) Action
8Lean condition is not present.
Does a driveability problem exist?–Go to
”Symptom
Diagnosis”Go to Step 16
91. Visually/physically inspect the following items
for vacuum leaks:
S Intake manifold.
S Throttle body.
S Injector O–rings.
2. Repair any leaks found as necessary.
Is the repair complete?–Go to Step 16Go to Step 16
10Allow the engine to idle.
Are the Idle Air Control (IAC) counts above the spe-
cified value?5Go to Step 11Go to Step 12
11Check the fuel for excessive water, alcohol, or other
contaminants and correct the contaminated fuel
condition if present.
Is the repair complete?–Go to Step 16Go to Step 13
12Check the IAC valve performance. Refer to ”DTC
P0506 Idle Speed RPM Lower Than Desired Idle
Speed” or ”DTC P0507 Idle Speed RPM Higher
Than Desired Idle Speed” in this section and repair
as necessary.
Is the repair complete?–Go to Step 16Go to Step 13
131. Connect a fuel pressure gauge to the fuel sys-
tem.
2. Turn the ignition OFF for at least 10 seconds.
3. Turn the ignition ON, with the engine OFF. The
fuel pump will run for approximately 2–3 sec-
onds. It may be necessary to cycle the ignition
switch ON more than once to obtain maximum
fuel pressure.
4. Note the fuel pressure with the fuel pump run-
ning. The pressure should be within the speci-
fied value. When the fuel pump stops, the pres-
sure may vary slightly then hold steady.
Is the fuel pressure steady and does the fuel pres-
sure hold?241–276 kPa
(35–40 psi)Go to Step 14Go to
”Fuel System
Diagnosis”
141. Start and idle the engine at normal operating
temperature.
2. The fuel pressure noted in the above step
should drop by the indicated value.
Does the fuel pressure drop by the indicated value?21–69 kPa
(3–10 psi)Go to
”Fuel Injector
Balance Test”Go to
”Fuel System
Diagnosis”
15Replace the MAP sensor.
Is the action complete?–Go to Step 16–