1F – 112IENGINE CONTROLS
DAEWOO V–121 BL4
DTCIlluminate MIL Error
Type Function
P0300Multiple Cylinder Misfire (Increase Emission)EYES
P0327Knock Sensor Circuit Fault (1.4L DOHC)CnlNO
P0327Knock Sensor Circuit Fault (1.6L DOHC)EYES
P0335Magnetic Crankshaft Position Sensor Electrical ErrorEYES
P033658X Crankshaft Position Sensor Extra/missing PulseEYES
P033758X Crankshaft Sensor No SignalEYES
P0341Camshaft Position Sensor RationalityEYES
P0342Camshaft Position Sensor No SignalEYES
P0351Ignition Signal Coil A FaultAYES
P0352Ignition Signal Coil B FaultAYES
P0400Exhaust Gas Recirculation Out of LimitEYES
P0404Exhaust Gas Recirculation (EGR) PpendEYES
P0405EGR Pintle Position Sensor Low VoltageEYES
P0406EGR Pintle Position Sensor High voltageEYES
P0420Catalyst Low EfficiencyAYES
P0444EVAP Purge Control Circuit No SignalEYES
P0445EVAP Purge Control Circuit FaultEYES
P0462Fuel Level Sensor Low Voltage (1.6L DOHC Only)CnlNO
P0463Fuel Level Sensor High Voltage (1.6L DOHC Only)CnlNO
P0480Low Speed Cooling Fan Relay Circuit Fault (1.4L DOHC)EYES
P0480Low Speed Cooling Fan Relay Circuit Fault (1.6L DOHC)CnlNO
P0481High Speed Cooling Fan Relay High Voltage (1.4L DOHC)EYES
P0481High Speed Cooling Fan Relay High Voltage (1.6L DOHC)CnlNO
P0501Vehicle Speed No Signal (M/T Only)AYES
P0510Throttle Positon Switch Circuit Fault (1.4L DOHC)CnlNO
P0510Throttle Positon Switch Circuit Fault (1.6L DOHC)AYES
P0532A/C Pressure Sensor Low VoltageCnlNO
P0533A/C Pressure Sensor High VoltageCnlNO
P0562System Voltage (Engine Side) Too LowCnlNO
P0563System Voltage (Engine Side) Too HighCnlNO
P0601Engine Control Module Checksum ErrorEYES
P0604Engine Control Module RAM ErrorEYES
P0605Engine Control Module INMVY Write ErrorEYES
P0656Fuel Level Gauge High Circuit FaultCnlNO
P1181Variable Intake Manifold Solenoid Low VoltageEYES
P1182Variable Intake Manifold Solenoid High VoltageEYES
P1230Fuel Pump Relay Low Voltage (1.4L DOHC)CnlNO
P1230Fuel Pump Relay Low Voltage (1.6L DOHC)AYES
P1231Fuel Pump Relay High Voltage (1.4L DOHC)CnlNO
P1231Fuel Pump Relay High Voltage (1.6L DOHC)AYES
P1320Crankshaft Segment Period Segment Adaptation At LimitEYES
1F – 114IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0107
MANIFOLD ABSOLUTE PRESSURE SENSOR LOW
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
(Case A)
S When the engine idling.
S No throttle position(TP) sensor MTIA fail conditions
present.
S Engine speed(rpm) is less than 2,500rpm.
S The MAP is less than 12.0 kPa.
(Case A)
S When the engine part load.
S The engine revolution speed is less than 4,000rpm.S No Throttle Position (TP) Sensor fails conditions
present.
S The Throttle Position (TP) angle greather than
30.0°.
S The MAP is less than 11.5 kPa.
S An open or low voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
ENGINE CONTROLS 1F – 117
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0108
MANIFOLD ABSOLUTE PRESSURE SENSOR HIGH
VOLTAGE
Circuit Description
The engine control module (ECM) uses the Manifold Ab-
solute Pressure (MAP) sensor to control the fuel delivery
and the ignition timing. The MAP sensor measures the
changes in the intake manifold pressure, which results
from engine load (intake manifold vacuum) and the rpm
changes; and converts these into voltage outputs. The
ECM sends a 5 volt–reference voltage to the MAP sensor.
As the manifold pressure changes, the output voltage of
the MAP sensor also changes. By monitoring the MAP
sensor output voltage, the ECM knows the manifold pres-
sure. A low–pressure (low voltage) output voltage will be
about 1.0 to 1.5 volts at idle, while higher pressure (high
voltage) output voltage will be about 4.5 to 4.8 at wide
open throttle (WOT). The MAP sensor is metric pressure,
allowing the ECM to make adjustments for different alti-
tudes.
Conditions for Setting the DTC
S This DTC can be stored in ”key–on” status.
S When the engine idling.
S Engine speed is greater than 700rpm.
S No throttle position sensor (TPS) fail conditions
present.
S The MAP is greater than 95kPA.
S A high voltage condition exists.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
With the ignition ON and the engine stopped, the manifold
pressure is equal to atmosphere pressure and the signal
voltage will be high.
The ECM as an indication of vehicle altitude uses this in-
formation. Comparison of this reading with a known good
vehicle with the same sensor is a good way to check the
accuracy of a suspect sensor. Readings should be the
same ±0.4volt.
If a DTC P0108 is intermittent, refer to ”Manifold Absolute
Pressure Check” in this section for further diagnosis.
If the connections are OK monitor the manifold absolute
pressure(MAP) sensor signal voltage while moving re-
lated connectors and the wiring harness. If the failure is in-
duced, the display on the scan tool will change. This may
help to isolate the location of an intermittent malfunction.
ENGINE CONTROLS 1F – 125
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0117
ENGINE COOLANT TEMPERATURE SENSOR LOW
VOLTAGE
Circuit Description
The Engine Coolant Temperature sensor (ECT) uses a
thermistor to control the signal voltage to the engine con-
trol module (ECM).
The ECM supplies a voltage on the signal circuit to the
sensor. When the engine coolant is cold, the resistance is
high; therefore the ECT signal voltage will be high.
As the engine warms, the sensor resistance becomes
less, and the voltage drops. At normal engine operating
temperature, the voltage will be between 1.5 and 2.0 volts
at the ECT signal terminal.
The ECT sensor is used to the following items:
S Fuel delivery.
S Lock Up Clutch (LUC).
S Ignition.
S Evaporative Emission (EVAP) Canister Purge
Valve.
S Electric cooling fan.
Conditions for Setting the DTC
S ECT voltage is less than 0.03V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will default to 20°C (68°F) for the first 60
seconds of the engine run time, and then 92 °C
(198 °F).
S The scan tool will not show the defaulted value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
After the engine has started, the ECT should rise steadily
to about 90°C (194°F) then stabilize when the thermostat
opens.
Use the temperature vs. Resistance values table to evalu-
ate the possibility of a skewed sensor. Refer to ”Tempera-
ture vs. Resistance” in this section.
1F – 128IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0118
ENGINE COOLANT TEMPERATURE SENSOR HIGH
VOLTAGE
Circuit Description
The coolant temperature sensor (ECT) uses a thermistor
to control the signal voltage to the engine control module
(ECM).
he ECM supplies a voltage on the signal circuit to the sen-
sor. When the air is cold, the resistance is high; therefore
the ECT sensor signal voltage will be high.
As the engine warms, the sensor resistance becomes
less, and the voltage drops. At normal engine operating
temperature, the voltage will be between 1.5 and 2.0 volts
at the ECT sensor signal terminal.
The ECT sensor is used to the following items:
S Fuel delivery.
S Lock Up Clutch (LUC).
S Ignition.
S Evaporative Emission (EVAP) Canister Purge
Valve.
S Electric cooling fan.
Conditions for Setting the DTC
S ECT voltage is greater than 4.98V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will substitutes a fixed MAP value and
use TP to control the fuel delivery (the scan tool will
not show defaulted)
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
After the engine has started, the ECT should rise steadily
to about 90°C (194°F) then stabilize when the thermostat
opens.
Use the temperature vs. Resistance values table to evalu-
ate the possibility of a skewed sensor. Refer to ”Tempera-
ture vs. Resistance” in this section.
ENGINE CONTROLS 1F – 131
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0122
THROTTLE POSITION SENSOR LOW VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 195). The charac-
teristics of the airflow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idles to
about 0.2V to 0.4 V at wide–open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S TPS voltage is less than 0.3V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.
S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will default to 20°C (68°F) for the first 60
seconds of the engine run time, and then 92 °C
(198 °F).
S The scan tool will not show the defaulted value.
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0122 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use the
scan tool DTC information data to determine the status of
the DTC. If the DTC occurs intermittently, using the DTC
P0121 diagnostic table may help isolate the problem.
1F – 134IENGINE CONTROLS
DAEWOO V–121 BL4
DIAGNOSTIC TROUBLE CODE (DTC) P0123
THROTTLE POSITION SENSOR HIGH VOLTAGE
Circuit Description
The aim of the MTIA (Main Throttle Idle Actuator) is to con-
trol the idle speed with the throttle body itself. The throttle
is motorized for low opening angle (05, 195). The charac-
teristics of the airflow are not the same for low and high
opening angles. As a matter of fact, the gradient of the
mass air flow function of TPS is lower for small angles that
permits to be more precise during the idle speed control.
Out of idle speed the throttle is actuated mechanically by
a classical bowdencable.
The throttle position sensor (TPS) provides a voltage sig-
nal that changes in relation to the throttle plate angle. The
signal voltage will vary from about nearly 5.0 V at idles to
about 0.2V to 0.4 V at wide–open throttle. The TPS is one
of the most important inputs used by the ECM for fuel con-
trol and other functions such as idle, wide open throttle,
deceleration enleanment, and acceleration enrichment.
Conditions for Setting the DTC
S TPS voltage is greater than 4.8V.
Action Taken When the DTC Sets
S The Malfunction Indicator Lamp (MIL) will illumi-
nate.
S The ECM will record operating conditions at the
time the diagnostic fails. This information will be
stored in the Freeze Frame and Failure Records
buffers.S A history DTC is stored.
S The coolant fan turns ON.
S The ECM will default to 20°C (68°F) for the first 60
seconds of the engine run time, and then 92 °C
(198 °F).
Conditions for Clearing the MIL/DTC
S The MIL will turn off after four consecutive ignition
cycles in which the diagnostic runs without a fault.
S A history DTC will clear after 40 consecutive warm–
up cycles without a fault.
S DTC(s) can be cleared by using the scan tool.
S Disconnecting the ECM battery feed for more than
10 seconds.
Diagnostic Aids
If the DTC P0123 cannot be duplicated, the information in-
cluded in the Freeze Frame data can be useful. Use the
scan tool DTC information data to determine the status of
the DTC. If the DTC occurs intermittently, using the DTC
P0121 diagnostic table may help isolate the problem.
With the ignition ON and the throttle at closed position the
voltage should read between 0.20 V and 0.90V and in-
crease steadily to over 4.5V at WOT.
DTCs P0123 and P0113 stored at the same time could be
the result of an open sensor ground circuit.
1F – 138IENGINE CONTROLS
DAEWOO V–121 BL4
Check for an intermittent ground in the wire between the
O2 sensor and the engine control module.
Perform an injector 2alance test to determine if a restricted
fuel injector may be causing the lean condition.
Vacuum of crankcase leaks will cause a lean running con-dition.
An exhaust manifold gasket leak of a cracked exhaust
manifold may cause outside air to be pulled into the ex-
haust and past the sensor.
DTC P0131 – Front Heated Oxygen Sensor Low Voltage
StepActionValue(s)YesNo
1Perform an Euro On–Board Diagnostic (EOBD)
System Check.
Is the system check complete?–Go to Step 2Go to
”On–Board
Diagnostic Sys-
tem Check”
21. Connect the scan tool to the data link connec-
tor (DLC).
2. Run the engine until it reaches operating tem-
perature.
3. Check for closed loop operation.
Does the engine control module(ECM) go into
closed loop?–Go to Step 3Go to Step 9
31. Run the until until it reaches operating temper-
ature?
2. Run the engine at 1,200rpm.
Does the scan tool read the upstream oxygen(O2 )
sensor signal voltage between the valve specified?0.25~0.65VGo to Step 5Go to Step 4
4Does the scan tool read the Oxygen sensor signal
voltage fixed below the valve specified?0.01VGo to Step 7Go to
”Diagnostic
Aids”
51. Disconnect the Oxygen sensor connector.
2. Run the warm engine at idle.
Does the scan tool read the Oxygen sensor signal
voltage between the valve specified?0.25~0.65VGo to
”Diagnostic
Aids”Go to Step 6
61. Turn the ignition switch to LOCK.
2. Check the Oxygen sensor wire between the
Oxygen sensor and the ECM connector termi-
nal 44 and 13 is open.
Is the problem found?–Go to Step 8Go to Step 11
71. Turn the ignition switch to LOCK.
2. Check the Oxygen sensor wire between the
Oxygen sensor and the ECM connector termi-
nal 44 for a short to ground.
Is the problem found?–Go to Step 8Go to Step 11
81. Repair the wire or the connector terminal as
needed.
2. Clear the any DTCs from the ECM.
3. Road tests the vehicle.
4. Perform the diagnostic system check.
Is the repair complete?–System OK–
91. Turn the ignition switch to LOCK.
2. Disconnect the Oxygen sensor connector.
3. Turn the ignition switch to ON.
Does the scan tool the Oxygen sensor signal voltage
between the valve specified?0.3~0.6VGo to Step 10Go to Step 11